首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9703篇
  免费   1103篇
  国内免费   590篇
化学   6593篇
晶体学   145篇
力学   849篇
综合类   28篇
数学   653篇
物理学   3128篇
  2024年   19篇
  2023年   68篇
  2022年   217篇
  2021年   219篇
  2020年   384篇
  2019年   258篇
  2018年   215篇
  2017年   280篇
  2016年   412篇
  2015年   380篇
  2014年   401篇
  2013年   687篇
  2012年   646篇
  2011年   593篇
  2010年   499篇
  2009年   681篇
  2008年   687篇
  2007年   707篇
  2006年   594篇
  2005年   476篇
  2004年   476篇
  2003年   403篇
  2002年   337篇
  2001年   255篇
  2000年   221篇
  1999年   244篇
  1998年   211篇
  1997年   135篇
  1996年   104篇
  1995年   116篇
  1994年   66篇
  1993年   66篇
  1992年   57篇
  1991年   47篇
  1990年   31篇
  1989年   31篇
  1988年   23篇
  1987年   20篇
  1986年   24篇
  1985年   14篇
  1984年   26篇
  1983年   4篇
  1982年   15篇
  1981年   7篇
  1980年   5篇
  1979年   11篇
  1978年   6篇
  1977年   8篇
  1976年   3篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
231.
Palladium(II) bromide reacts with gallium(III) bromide in the presence of arenes yielding binuclear palladium(I) complexes [Pd2(GaBr4)2(arene)2], where arene=benzene (1), toluene (2) and p-xylene (3). Reaction of palladium(II) chloride with gallium(III) chloride in p-xylene leads to the analogous palladium(I) compound [Pd2(GaCl4)2(p-xylene)2] (4); the X-ray structures of 1-4 were determined.  相似文献   
232.
The concept of crystalline module, that is, an unambiguously isolated, repeated quasi-molecular element, is introduced. This concept is more general than the concept of crystal lattice. The generalized modular approach allows extension of the methods and principles of crystallography to quasi-crystals, clusters, amorphous solids, and periodic biological structures. Principles of construction of aperiodic, nonequilibrium regular modular structures are formulated. Limitations on the size of icosahedral clusters are due to the presence of spherical shells with non-Euclidean tetrahedral tiling in their structure. A parametric relationship between the structures of icosahedral fullerenes and metal clusters of the Chini series was found.  相似文献   
233.
Inclusion complexes of poly(ethylene oxide) with α-cyclodextrin are the key compounds in the synthesis of polyrotaxanes. These complexes prepared in aqueous solutions contain free cyclodextrin, which cocrystallizes with the major reaction product. These complexes dissociate upon dissolution in DMF and DMSO to form cyclodextrin and pseudopolyrotaxanes with a low cyclodextrin content. Polyrotaxane was synthesized with the use of poly(ethylene oxide)-α,ω-bis-amine as a linear component. The end-groups of the polymer in the inclusion complex were modified by the reaction with 2,4-dinitrofluorobenzene. A procedure was developed for purification of a polyrotaxane with high cyclodextrin content. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1914–1918, August, 2005.  相似文献   
234.
Reactions between 2-pyridylamides of Z-4-aryl-2-hydroxy-4-oxobut-2-enoic acids with diazomethane have been used to synthesize 3-(2-aryl-2-oxoethyl)-3-methoxy-2-oxo-2,3-dihydroimidazo[1,2-a]pyridines, which form hydrochlorides with hydrochloric acid. The structure of the latter has been demonstrated by XRD for the hydrochloride of 3-methoxy-2-oxo-3-(2-phenyl-2-oxoethyl)-2,3-dihydroimidazo[1,2-a]pyridine. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 464–468, 2007.  相似文献   
235.
The oxidative electrochemistry of 11 chiral bis-phosphinoferrocene ligands, all within the Josiphos class of ligands, was examined in methylene chloride. The oxidation of these ligands displays multiple waves of varying chemical reversibility. Palladium(II) and platinum(II) complexes with the general formula [MCl2(P-P)] (M = Pd or Pt; P-P = Josiphos) were prepared, characterized by NMR and cyclic voltammetry. The electrochemistry simplifies greatly upon coordination of the Josiphos ligands. The X-ray structures of a palladium(II) and platinum(II) complex of the same Josiphos ligand are reported.  相似文献   
236.
M4X3[Si2O7]-Type Lanthanide Chalcogenide Disilicates (M ? Ce? Er; X ? S, Se) Attempts to produce single crystals of MSe2 (or MSe2?X) by vapour phase transport with iodine or the oxidation of MCl2 (or MClH) with sulfur in the presence of NaCl in sealed evacuated quartz containers often yielded well-grown single crystals with the composition M4X3[Si2O7] (M ? pr, Sm, Gd, X ? Se, and M ? Nd, Er, X ? S) as by-products. The crystal structures (tetragonal, 141/amd (no. 141)), Z = 8, contain two crystallographically independent M3+ Cations that are interconnected by chalcogenide (X2?) and disilicate anions ([Si2O7]6?). (M1)3+ is surrounded by eight (five X2? and three terminal O2? of the disilicate group), (M2)3+ by nine (three X2? and six terminal O2? of the [Si2O7]6? anion) chalcogenide anions. The disilicate anion itself exhibits the eclipsed conformation with non-linear Si? O? Si bridges (angles: 128 – 133°).  相似文献   
237.
Single phase powders of (A19N7)[In4]2 (A = Ca, Sr) and (Ca4N)[In2] were prepared by reaction of melt beads of the metallic components with nitrogen. The crystal structure of (Ca19N7)[In4]2 was refined based on neutron and X‐ray powder diffraction data. The crystal structure of (Sr19N7)[In4]2 was solved from the X‐ray powder pattern. The structure refinements in combination with results from chemical analyses ascertain the compositions. The compounds (A19N7)[In4]2 (A = Ca, Sr) are isotypes of (Ca19N7)[Ag4]2; (Ca19N7)[In4]2 is probably identical to the earlier reported (Ca18.5N7)[In4]2. The crystal structure of the isotypes (A19N7)[In4]2 (A = Ca, Sr; cubic, , Ca: a = 1471.65(3) pm; Sr: a = 1561.0(1) pm) contains isolated [In4] tetrahedra embedded in a framework of edge‐ and vertex‐sharing (A6N) octahedra. Six of these octahedra are condensed by edge‐sharing around one central A2+ ion to form “superoctahedra” (A19N6) which are connected three‐dimensionally via further octahedra by corner‐sharing. The crystal structure of (Ca4N)[In2] (tetragonal, I41/amd, a = 491.14(4) pm, c = 2907.7(3) pm) consists of alternating layers of perovskite type slabs of vertex‐sharing octahedra (Ca2Ca4/2N) and parallel arranged infinite zigzag chains equation/tex2gif-stack-1.gif[In2]. In the sense of Zintl‐type counting the compounds (A2+)19(N3?)7[(In2.125?)4]2 present an electron excess, (Ca2+)4(N3?)[(In2.5?)2] is electron deficient. Metallic properties are supported by electrical resistivity and magnetic susceptibility measurements. The analysis of the electronic structures gives evidence for the existence of homoatomic interactions In–In and significant heteroatomic metal–metal interactions Ca–In which favor the deviations of the title compounds from the (8 – N) rule.  相似文献   
238.
The reactions of CpRu(dppf)Cl (1) with the sulfur-containing ligands, thiophenol HSPh, 2-mercaptopyridine C5H4N(SH), thiourea SC(NH2)2, vinylene trithiocarbonate SCS(CH)2S and ethylene trithiocarbonate SCS(CH2)2S, yielded chloro-substituted derivatives, viz. the mono-ruthenium(II) complexes CpRu(dppf)(SPh) (2), [CpRu(dppf)(SC5H4NH)]BPh4 (3)BPh4, [CpRu(dppf)(SC(NH2)2]PF6 (4)PF6, [CpRu(dppf)(SCS(CH)2S)]Cl (5)Cl and [CpRu(dppf)(SCS(CH2)2S)]Cl (6)Cl, respectively. Treatment of 1 with AuCl(SMe2) in the presence of NH4PF6 gave [(CpRu(dppf)(SMe2)]PF6 (7)PF6. The reaction of 1 or 6 with SnCl2 resulted in cleavage of chloro and dithiocarbonate ligands, respectively, to give CpRu(dppf)SnCl3 (8). All complexes were spectroscopically characterized and the structures of 2 and cationic complexes 4-7 were determined by single-crystal diffraction analyses.  相似文献   
239.
Binuclear Nickel(0) Alkyne Coordination Compounds – Correlation between Ligand Periphery and Supramolecular Structure Reaction of Ni(cdt: 1,5,9-cyclododecatriene) with functionalized alkynes and subsequent reaction with ethylenediamines gives binuclear compounds of the type (diamine)Ni(μ-alkyne)Ni(alkyne). Compounds with alkyne-diols (N?N)Ni2(HOR1R2C? C?C? CR1R2OH)2 show supramolecular structures in which two identical intramolecular and one intermolecular hydrogen bonds are realized. 1 and 2 (chelate ligand in each case N,N,N′,N′-tetramethylethylenediamine, TMEDA, in 1 R1 = R2 = Me, in 2 R1 = R2 = Et) polymer-like chains are built up by connecting the binuclear units. Via two intermolecular hydrogen bonds per organometallic unit in 1 and via one intermoleculare hydrogen bond in 2 the chains are connected to give double chains. By substitution of one methyl group of TMEDA by hydrogen ( 3 : R1 = R2 = Me) a polymerlike network is produced by connecting the polymer-like chains. In compound 4 in which one of the methyl groups of TMEDA is substituted by CH2CH2NMe2 the polymer-like chains remain unconnected. In 5 (diamine = TMEDA, alkyne = (CH3)3C? C?C? CMe2OH) one intermolecular hydrogen bond per organometallic unit is observed forming again polymer-like chains that are independent of each other.  相似文献   
240.
To investigate the solvation structure of the Cu(II) ion in liquid ammonia, ab initio quantum-mechanical/molecular-mechanical (QM/MM) molecular dynamics (MD) simulations were carried out at Hartree Fock (HF) and hybrid density functional theory (B3 LYP) levels. A sixfold-coordinated species was found to be predominant in the HF case whereas five- and sixfold-coordinated complexes were obtained in a ratio 2:1 from the B3 LYP simulation. In contrast to hydrated Cu(II), which exhibits a typical Jahn-Teller distortion, the geometrical arrangement of ligand molecules in the case of ammonia can be described as a [2 + 4] ([2 + 3]) configuration with 4 (3) elongated copper-nitrogen bonds. First shell solvent exchange reactions at picosecond rate took place in both HF and B3 LYP simulations, again in contrast to the more stable sixfold-coordinated hydrate. NH3 ligands apparently lead to strongly accelerated dynamics of the Cu(II) solvate due to the "inverse" [2 + 4] structure with its larger number of elongated copper-ligand bonds. Several dynamical properties, such as mean ligand residence times or ion-ligand stretching frequencies, prove the high lability of the solvated complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号