首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1519篇
  免费   531篇
  国内免费   107篇
化学   683篇
晶体学   7篇
力学   60篇
综合类   31篇
数学   101篇
物理学   1275篇
  2024年   3篇
  2023年   15篇
  2022年   49篇
  2021年   64篇
  2020年   80篇
  2019年   63篇
  2018年   44篇
  2017年   49篇
  2016年   71篇
  2015年   70篇
  2014年   151篇
  2013年   125篇
  2012年   161篇
  2011年   108篇
  2010年   154篇
  2009年   101篇
  2008年   91篇
  2007年   91篇
  2006年   107篇
  2005年   85篇
  2004年   87篇
  2003年   76篇
  2002年   39篇
  2001年   48篇
  2000年   42篇
  1999年   35篇
  1998年   22篇
  1997年   33篇
  1996年   21篇
  1995年   16篇
  1994年   16篇
  1993年   11篇
  1992年   9篇
  1991年   6篇
  1990年   9篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1957年   1篇
排序方式: 共有2157条查询结果,搜索用时 15 毫秒
21.
The mechanism of the slowly opened Q-switch operation was investigated thoroughly. Maximum energy extraction from the resonator could be optimized, and the smallest output beam divergence could be achieved. In this article, we present a detailed analysis that has numerically verified the mode-selection mechanism in the slowly opened Q-switch operation, and the degree of the smaller output laser beam divergence that has been achieved. The mechanism of the slowly opened Q-switch operation is the inherent advantage of the passive saturable absorber in this operation. We can use the maximum energy extraction and the smallest output beam divergence results of the slowly opened Q-switch operation to design and optimize various passive saturable absorbers: plastic dye sheets, LiF:F2 color center crystals, Cr4+: YAG crystals, RG1000 color glass filters, and the single crystal semiconductor saturable absorber wafers that are in developed in our microchip laser systems.  相似文献   
22.
徐法强  侯瑞玲 《分子催化》1997,11(4):247-252
以碳酸锶为甲烷吸附活化的模型催化剂,用切换变应答、CH4(CO2)-TPD等技术,对甲烷的吸附、碱性对催化剂性能的影响进行了研究,结果表明,甲烷在碳酸锶上的活化显示出明显的酸碱活化机理特征,瞬变应答及TPD结果均证明,甲烷在碳酸锶表面有较强的吸附,其脱附温度约310℃,关联结果表明,甲烷转化率及C2烃收率与催化剂表面SrO碱性中心浓度有非常一致的顺变关系,因此催化剂表面的酸碱中心可能是甲烷的选择活  相似文献   
23.
周雨  宋凤瑞 《分析化学》1996,24(9):1032-1035
本文研究了18种α-氨基酸的快原子轰击质谱,发现添加三氟乙酸溶液能显著提高灵敏度,改善谱图。特征碎片主要有中性丢失CO2H2,H2O,NH3的离子以及R^+离子。侧链的性质决定了碎片的产生和离子的强弱。  相似文献   
24.
众所周知 ,聚合物的光电性质依赖于聚合物链的构象和 (或 )组成 ,通过在聚合物上引入手性单元 ,采用圆二色谱 ( CD)和圆偏振荧光光谱 ( CPL)等方法可表征聚合物结构 [1] .近年来 ,由于圆偏振光可用作光数据存储和液晶显示器背景光 [2 ] ,人们开始注重共轭聚合物圆偏振光材料的研究 .共轭聚合物的光致和电致圆偏振光的现象由一种带手性侧链的聚噻吩[3 ] 和一种带手性侧链的聚 (对苯撑乙烯 ) [4 ]产生 ,但它们的圆偏振荧光度 (用不对称因子 glum=2 ( IL-IR) / ( IL+IR)表示 ,IL 和 IR 分别指左圆偏振光强度和右圆偏振光强度 )相对较低 …  相似文献   
25.
在具有不同氧化层厚度的p型硅基片上修饰2层磺化酞菁铜分子膜.利用时间分辨表面光电压谱技术,对该膜系的界面电荷转移机制的光电开关特性进行了研究。结果表明,用时间分辨表面光电压谱技术研究界面电荷转移过程具有明显优越性.  相似文献   
26.
9 氯甲基蒽 ( 1 )与 3 ,5 二甲氧基苄醇 ( 2 )在相转移催化剂存在下反应生成 9 ( 3 ,5 二甲氧基苄基氧甲基 )蒽 ( 3 ) .( 3 )的苯溶液在紫外光照射下发生蒽环与苯环间的分子内 [4π + 4π]光致环加成反应 ,定量地生成多环化合物 ( 4 ) .( 4 )在热的作用下发生逆反应 ,定量地转化成原料 ( 3 ) .这种光致可逆反应可应用于制备光开关材料 .  相似文献   
27.
Liquid crystalline ionomers containing sulfonate groups on the terminal unit of the chain were synthesized by an interfacial condensation reaction of 4,4′-dihydroxy-α,α′-dimethyl benzalazine, the monofunctional dye fast yellow (FY), and a 50/50 mixture of sebacoyl and dodecanedioyl dichlorides. The weight-average molecular weights were estimated from inherent viscosity measurements to be between 6000–11,000 and the sodium sulfonate concentrations ranged from 0–18.4 meq/100 g polymer. Elemental analyses, however, indicated much higher molecular weights, which suggested that there was a distribution of chains with one, two, or no FY endgroups. The polymers were semicrystalline and melted at ca. 140°C to form nematic mesophases that were stable over a temperature range of ca. 80°C. They were thermally stable to about 350°C. The ionomeric nature of the polymers was confirmed by the presence of intermolecular associations in nonpolar solvents, as demonstrated by dilute solution viscosity measurements.  相似文献   
28.
Metal hydroxides represent a very interesting and highly useful class of compounds that have been known to chemists for a very long time. While alkali and alkaline earth metal hydroxides (s‐block) are commonplace chemicals in terms of their abundance and their use in a chemical laboratory as bases, the interest in Brønsted acidic molecular terminal hydroxides of p‐block elements, such as aluminum and silicon, has been of recent origin, with respect to the variety of applications these compounds can offer both in materials science and catalysis. Moreover, these systems are environmentally friendly, relative to the metal halides, owing to their ‐OH functionality (resembling that of water). Design and conceptualization of the corresponding terminal thiols, selenols, and tellurols (M? SH, M? SeH, and M? TeH) offer even more challenging problems to synthetic inorganic chemists. This concept summarizes some of the recent strategies developed to stabilize these otherwise very unstable species. The successful preparation of a number of silicon trihydroxides a few years back resulted in the generation of several model compounds for metal–silicates. The recent synthesis of unusual aluminum compounds such as RAl(OH)2, RAl(SH)2, and RAl(SeH)2 with terminal EH (E=O, Se, or Se) groups is likely to change the ways in which some of the well‐known catalytic conversions are being carried out. The need for very flexible and innovative synthetic strategies to achieve these unusual compounds is emphasized in this concept.  相似文献   
29.
This communication will demonstrate the existence of a thermodynamic molecular switch in the pairwise, sequence‐specific hydrophobic interaction of Ile–Ile, Leu–Ile, Val–Leu, or Ala–Leu over the temperature range of 273–333 K reported by Nemethy and Scheraga in 1962. Based on Chun's development of the Planck–Benzinger methodology, the change in inherent chemical bond energy at 0 K, ΔH°(T0), is 3.0 kcal mol?1 for Ile–Ile, 2.4 for Leu–Ile, 1.8 for Val–Leu, and 1.2 kcal mol?1 for Ala–Leu. The value of ΔH°(T0) decreases as the length of the hydrophobic side chain decreases. It is clear that the strength and stability of the hydrophobic interaction is determined by the packing density of the side chains, with Ala–Leu being the most stable. At 〈Tm〉, the thermal agitation energy, $\int^{T}_{0}\Delta Cp^{\circ}(T)\,dT$, is about five times greater than ΔH°(T0) in each case. Additionally, the thermal agitation energy for the same series, evaluated at 〈Tm〉, decreases in the same order, that is, as the length of the side chain decreases. This pairwise, sequence‐specific hydrophobic interaction is highly similar in its thermodynamic behavior to that of other biological systems, except that the negative Gibbs free energy change minimum at 〈Ts〉 occurs at a considerably higher temperature, 355 K compared to about 300 K. The melting temperature, 〈Tm〉, is also high, 470 K compared to 343 K in a biological system. The implication is that the negative Gibbs free energy minimum at a well‐defined 〈Ts〉 has it origin in the hydrophobic interactions, which are highly dependent on details of molecular structure. In addition to the four specific dipeptide interactions described, we have shown in our unpublished work the existence of a thermodynamic molecular switch in the interactions of 32 dipeptides wherein a change of sign in ΔCp°(T)reaction leads to a true negative minimum in the Gibbs free energy of reaction, and hence, a maximum in the related Keq. Indeed, all interacting biological systems that we have thus far examined using the Planck–Benzinger approach point to the universality of thermodynamic molecular switches. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   
30.
The last two decades have seen a dramatic development in the study of metal-metal multiple bonds, particular successes being recorded in the field of organometallic chemistry. Syntheses designed to produce novel transition metal complexes with single, double, triple and quadruple metal-metal bonds occupy a most important place in such research, as also do reactivity studies. A striving to establish general principles has provided much of the motivation for such work, but one less obvious goal—the commercial application of the catalytic properties of metal-metal multiple bonding systems, in the medium and long term—should not be overlooked. All aspects of the investigations of metal-metal multiple bonds also apply to a particular class of compound that has, however, enjoyed little lime-light and thus deserves the present review: complexes with multiple bonds between transition metals and substituent-free (“bare”) main group elements. Although based mostly on accidental discoveries, the few noteworthy examples are now beginning to unfold general concepts of synthesis that are capable of being extended and thus are deserving of exploitation in preparative chemistry. The availability of further structural patterns exhibiting multiple bonds between transition metals and ligand-free main group elements might enable preparative organometallic chemistry to expand in a completely new direction (for instance by the stabilizing or activation of small molecules at the metal complex). This essay discusses the chemistry of complexes of bare carbon, nitrogen, and oxygen ligands (carbido-, nitrido-, and oxo-complexes) and their relationships to higher homologues from both a synthetic and a structural point of view.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号