首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   27篇
  国内免费   14篇
化学   153篇
晶体学   5篇
力学   1篇
综合类   1篇
物理学   50篇
  2023年   1篇
  2022年   2篇
  2021年   14篇
  2020年   13篇
  2019年   7篇
  2018年   16篇
  2017年   18篇
  2016年   13篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   14篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有210条查询结果,搜索用时 31 毫秒
81.
Green tea extract having many phenolic hydroxyl and carbonyl functional groups in its molecular framework can be used in the modification of Fe3O4 nanoparticles. Moreover, the feasibility of complexation of polyphenols with silver ions in aqueous solution can improve the surface properties and capacity of the Fe3O4@green tea extract nanoparticles (Fe3O4@GTE NPs) for sorption and reduction of silver ions. Therefore, the novel Fe3O4@GTE NPs nano‐sorbent has potential ability as both reducing and stabilizing agent for immobilization of silver nanoparticles to make a novel magnetic silver nanocatalyst (Fe3O4@GTE/Ag NPs). Inductively coupled plasma analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray and Fourier transform infrared spectroscopies, and vibrating sample magnetometry were used to characterize the catalyst. Fe3O4@GTE/Ag NPs shows high catalytic activity as a recyclable nanocatalyst for the reduction of 4‐nitrophenol at room temperature.  相似文献   
82.
采用SI-PIN半导体探测器、241Am激发源和2048通道分析器及自行研制的SI-PIN 2000便携式X荧光分析仪,对钒钛磁铁矿直接粉末样品中Ti,V,Cr,Mn,Fe,Co,Ni,Cu等8个主、次元素进行了分析应用研究。文章叙述了所采用的直接粉末样品法的样品盒结构、基体校正的α系数计算方法、重叠干扰校正原则和漂移校正的方法,并且给出了所选择的分析条件和样品制备方法,分析过程简单、结果准确、分析速度快,特别适应矿山、冶金的生产原料分析需要,有良好的应用前景, 与封闭正比计数器X射线荧光分析仪相比,检出限降低了1个数量级。  相似文献   
83.
The preparation of fumed silica-based anisometric supraparticles with well-defined catalytically active patches suitable for self-propulsion is presented here. These sub-millimeter-sized particles can self-propel as they contain Pt-covered magnetite (Fe3O4) nanoparticles, where the Pt can decompose catalytically a “fuel” like H2O2 and thereby propel the supraparticles. By their magnetic properties, the catalytically active nanoparticles can be concentrated in patches on the supraparticle surface. The goal is to obtain robust supraparticles with well-defined patchiness and long-time stability during self-propulsion through evaporation-induced self-assembly (EISA) on a superhydrophobic surface. The latter is a major issue as oxygen evolution can lead to the disintegration of the supraparticles. Therefore, enhanced mechanical stability is sought using a number of different additives, where the best results are obtained by incorporating polystyrene microspheres followed by heat treatment or reinforcement with microfibrillated cellulose (MFC) and sodium trisilicate (Na2SiO3). The detailed internal structure of the different types of particles is investigated by confocal micro-X-ray fluorescence spectroscopy (CMXRF), which allows for precisely locating the catalytic Fe3O4@Pt nanoparticles within the supraparticles with a resolution in the µm range. The insights on the supraparticle structure, together with their long-time stability, allow fabricating optimized patchy supraparticles for potential applications in propulsion-enhanced catalysis.  相似文献   
84.
The increased global concern on environmental protection has made researchers focus their attention on new and more efficient methods of pollutant removal. In this research, novel nanocomposite adsorbents,i.e., magnetic hydroxyapatite (Fe3O4@HA) and magnetic hydroxyapatite β‐cyclodextrin (Fe3O4@HA‐CD) were synthesized and used for heavy metal removal. The adsorbents were characterized by FTIR, XRD, TGA, VSM, and SEM. In order to investigate the effect of β‐cyclodextrin (β‐CD) removal efficiency, adsorption results of nine metal ions were compared for both adsorbents. β‐CD showed the most increasing effect for Cd2+ and Cu2+ removal, so these two ions were selected for further studies. The effect of diverse parameters including pH, contact time, initial metal ion concentration and adsorbent dosage on the adsorption process was discussed. The optimum pH was 6 and adsorption equilibrium was achieved after 1 hr. Adsorption kinetic data were well fitted by pseudo‐second‐order model proposing that metal ions were adsorbed via chemical reaction. Adsorption isotherm was best described by the Langmuir model, and maximum adsorption capacity for Cd2+ and Cu2+ was 100.00 and 66.66 (mg/g), respectively. Desorption experiment was also done, and the most efficient eluent used for desorption of metal ions was EDTA (0.001 M) with 91% and 88% of Cd2+ and Cu2+ release, respectively. Recyclability studies also showed a 19% decrease in the adsorption capacity of the adsorbent after five cycles of regeneration. Therefore, the synthesized adsorbents were recognized as potential candidates for heavy metal adsorption applications.  相似文献   
85.
86.
The thermal stability of two amino acid-(tyrosine and tryptophan) coated magnetite and their corresponding precursors, [Fe2IIIFeII(Tyr)8]·9H2O and [Fe2IIIFeII(Trp)2(OH)4](NO3)2·8H2O (where tyrosine=Tyr and tryptophan=Trp), was analyzed in comparison with free amino acids. The complexes present a lower thermal stability relative to the free ligand, due to the catalytic effect introduced by the iron cation and the presence of NO3 groups. The presence of NO3 group determines also a different degradation’s stoichiometry of the amino acid anion comparative with the one expressed by the free ligand molecule. The amino acid bonded to magnetite decomposes in two steps, its presence inducing an increasing of γ-Fe2O3→Fe2O3 conversion temperature.  相似文献   
87.
Atomically precise molecular metal-oxo clusters provide ideal models to understand metal oxide surfaces, self-assembly, and form-function relationships. Devising strategies for synthesis and isolation of these molecular forms remains a challenge. Here, the synthesis of four Ln-Fe oxo clusters that feature the ϵ-{Fe13} Keggin cluster in their core is reported. The {Fe13} metal-oxo cluster motif is the building block of two important iron oxyhydroxyide phases in nature and technology, ferrihydrite (as the δ-isomer) and magnetite (the ϵ-isomer). The reported ϵ-{Fe13} Keggin isomer as an isolated molecule provides the opportunity to study the formation of ferrihydrite and magnetite from this building unit. The four currently reported isostructural lanthanide-iron-oxo clusters are fully formulated [Y12Fe33(TEOA)12(Hyp)63-OH)204-O)28(H2O)12](ClO4)23 ⋅ 50 H2O ( 1 , Y12Fe33 ), [Gd12Fe33(TEOA)12(Hyp)63-OH)204-O)32(H2O)12](ClO4)15 ⋅ 50 H2O ( 2 , Gd12Fe33 ) and [Ln16Fe29(TEOA)12(Hyp)63-OH)244-O)28(H2O)16](ClO4)16(NO3)3n H2O (Ln=Y for 3 , Y16Fe29 , n=37 and Ln=Gd for 4 , Gd16Fe29 n=25; Hyp=trans-4-Hydroxyl-l -proline and TEOA=triethanolamine). The next metal layer surrounding the ϵ-{Fe13} core within these clusters exhibits a similar arrangement as the magnetite lattice, and Fe and Ln can occupy the same positions. This provides the opportunity to construct a family of compounds and optimize magnetic exchange in these molecules through composition tuning. Small-angle X-ray scattering (SAXS) and high-resolution electrospray ionization mass spectrometry (HRESI-MS) show that these clusters are stable upon dissolution in both water and organic solvents, as a first step to performing further chemistry towards building magnetic arrays or investigating ferrihydrite and magnetite assembly from pre-nucleation clusters.  相似文献   
88.
89.
This work describes the preparation, characterization and in vitro adsorption tests of surface-modified magnetoliposomes for affinity binding of (i) anticardiolipin (isotype G) antibodies and (ii) specific isotype E antibodies generated by hypersensitivity reactions in humans with respiratory allergy. In the first case, cardiolipin embedded in the bilayer of magnetoliposomes was used as specific ligand. In the second case, antigenic proteins present in an extract of Dermatophagoids pteronyssinus and Blomia tropicalis mites were covalently coupled on the surface of magnetoliposomes via a diglycolic spacer arm, and used as specific ligands for IgE. Antibody adsorption was performed in a high-gradient magnetophoresis system, using either sera of healthy individuals or a pool of sera from autoimmune or allergic patients. The selectivity and capacity of the system were quantified by a frontal analysis in a capillary column, and by constructing breakthrough curves. The results show that the highest yield and selectivity were obtained if the ligand was extended into the aqueous layer surrounding the magnetoliposome surface. A 100% selectivity was obtained for adsorption of specific IgE, and 8% for IgG. These results demonstrate the potentialities of both types of surface-modified magnetic biocolloids in the field of in vitro diagnosis tests for allergic or autoimmune conditions.  相似文献   
90.
《Analytical letters》2012,45(11):1988-2000
Abstract

A novel, selective, and sensitive magnetic-mimetic enzyme fluorescence immunoassay method for antigen detection has been developed by taking advantage of a magnetic separation process and the amplification feature of the hemin label. This method is based on a twice amplified fluorescence signal. The signal is first amplified due to the ultrasmall size and the high surface-to-volume ratio of the silica-coated magnetite nanoparticles, which enable the nanoparticles to carry much more antibodies. Second, the mimetic enzyme (hemin) as a labeling reagent catalyzes the reaction of p-hydroxyphenyl acetic acid and H2O2 can further amplify the fluorescence signal. This protocol was also evaluated for a sandwich-type immunoassay of human IgG, and the calibration graph for human IgG was linear over the range of 0–100 ng mL?1 with a detection limit of 9.8 ng mL?1. This method can easily separate magnetic nanoparticles from the solution, which simplified the process and played a promising role for various applications in immunoassay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号