首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   27篇
  国内免费   14篇
化学   153篇
晶体学   5篇
力学   1篇
综合类   1篇
物理学   50篇
  2023年   1篇
  2022年   2篇
  2021年   14篇
  2020年   13篇
  2019年   7篇
  2018年   16篇
  2017年   18篇
  2016年   13篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   14篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
61.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   
62.
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind‐boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions.  相似文献   
63.
Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between −0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm−2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.  相似文献   
64.
Synthesis experiments, made in a hermetically closed steel container through pyrolytical decomposition of various mixtures like ferrocene and xylene; ferrocene and water; ferrocene, xylene and water in different ratios have resulted in emergence of different in shape particles. The necessary for the realization of each experiment temperature increases linearly with 20 K/min up to the needed temperature and decreases mostly with no delay with a cooling rate of 30 K/min down to room temperature. The obtained particles are shaped as spheres, entirely or partially finished octahedrons or resemble stars. The spheres are perfect in shape and consist of pure incompletely graphitisized carbon. The octahedron and star‐like shaped particles, synthesized in the presence of ferrocene as precursor, have magnetite nuclei and carbon coating. Particle morphology has been examined by Scanning (SEM) and Transmission Electron Microscopy (TEM) and their chemical composition and crystal structure by the means of X‐ray diffraction (XRD), Mössbauer spectroscopy and Electron Probe X‐ray Micro Analysis and Energy Dispersive X‐ray Spectrometry (EDS). Based on the results obtained it has been concluded that the synthesized particle morphology depends on the simultaneous proceeding magnetite crystal growing and crystal coating with partially graphitisized carbon deposit. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
65.
Two‐dimensional plate‐like Fe3O4 nanocrystals and nanoparticles could be synthesized by a simple one‐step sonochemical method through ultrasonic irradiation in reverse co‐precipitation solution at low temperature. This technique provided a facile and rapid way to prepare Fe3O4nanocrystals with different morphology and size. Magnetite nanoplates were synthesized with only ferrous salt adding into alkali solution, and adding ferric ions with low molar ratio in the metal salts solution would lead to the formation of very small magnetite nanoparticles (∼10 nm). The size of as‐prepared magnetite nanoparticles increased with increasing reaction temperature and showed narrow size distribution, the standard deviation less than 2 nm. This investigation indicated that ferric ions had significant influence on the morphology of Fe3O4 nanocrystals. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
66.
The use of radio-frequency (RF) energy for the thermal activation of tumor-targeted nanoparticles (NPs) is a promising non-invasive hyperthermic treatment because RF waves penetrate deep through tissue. Nonetheless, while the approach has been demonstrated using gold (Au) and iron oxide NPs, the RF-mediated heating mechanism of AuNPs has been controversial. A part of the reason is that measuring and modeling the heating of AuNPs in an RF field is a complex endeavor that depends on the chemical and physical properties of the AuNPs, interfacial phenomena involving AuNP coatings and the sample medium, and the antenna design and characteristics of the RF field. Herein, the mechanisms and factors affecting the 13.56-MHz RF-mediated heating of AuNPs are reviewed, a new factor concerning the thermal isolation of RF antennae is presented, and the ability of a new water-free cooling system to thermally isolate samples from the heat generated by metal RF-induction coils is demonstrated.  相似文献   
67.
The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self‐assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi‐core nanoparticles are determined. In addition, a self‐consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower‐shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)2, polyol‐mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long‐term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi‐core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower‐shaped nanoparticles.  相似文献   
68.
Elastomer nanocomposites were prepared by mixing carbon nanofiber (CNF) decorated with metal nanoparticles (CNF–Fe2O3) with latex. The Fe2O3 metal nanoparticles were decorated on the CNF by electrostatic attraction via a green and facile solution-based method. The presence of the metal nanoparticles on the surface of the CNF improved their dispersion and electric contact resistance in the elastomer matrix. Interestingly, the CNF–Fe2O3/elastomer composite exhibited improvements in both tensile strength and elongation (carbon black/elastomer), by as much as 9.7 and 28.9%, respectively, compared to an elastomer control without filler. Also, the CNF–Fe2O3/elastomer exhibited superior thermal and electrical conductivity compared with the control. In an applied magnetic field the elastomer nanocomposites showed a significant transition from dominant diamagnetism to ferromagnetism due to synergies between the Fe2O3 nanoparticles and the CNF. The elastomer nanocomposites prepared with CNF–Fe2O3 will open significant new opportunities for preparing advanced elastomer nanocomposites for future engineering applications.  相似文献   
69.
Novel multifunctional titanium dioxide (TiO2)/polystyrene/magnetite composite hybrid polymer particle dispersions with TiO2 nanoparticles in the surface and magnetite nanoparticles encapsulated inside the polymer matrix were produced by Pickering miniemulsion polymerization in one single step. Whereas TiO2 nanoparticles were used to impart photocatalytic functionality and colloidal stability, magnetite nanoparticles were incorporated to allow an easy extraction for recovery and reuse of the composite multifunctional particles. The morphology of the composite particles was assessed by scanning transition electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). The paramagnetism of the particles was analyzed using a SQUID magnetometer and their photocatalytic activity was assessed by degrading methylene blue (MB) solutions under UV light and by recovering and reusing of the particles in five consecutive cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3350–3356  相似文献   
70.
Samples of four different loess/paleosol couplets of a loess sequence in Huangling (China) have been studied with 57Fe Mössbauer spectroscopy. Each sample was separated into strongly, weakly and very weakly magnetic fractions. The iron mineralogy of the strongly magnetic fractions of both loess and soils consists of magnetite/maghemite and hematite together with some silicates. The soils contain some additional small-particle maghemite. From the spectral behaviour a similarity in terms of morphology and crystal chemistry for hematite throughout the whole section could be inferred. The ratio of iron in magnetite and maghemite to that in hematite differentiates well between the loess and soil samples. These results strongly suggest the neo-formation of magnetite/maghemite in the soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号