首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10022篇
  免费   2264篇
  国内免费   1174篇
化学   5920篇
晶体学   184篇
力学   351篇
综合类   64篇
数学   212篇
物理学   6729篇
  2024年   18篇
  2023年   113篇
  2022年   322篇
  2021年   338篇
  2020年   482篇
  2019年   444篇
  2018年   426篇
  2017年   452篇
  2016年   539篇
  2015年   448篇
  2014年   539篇
  2013年   863篇
  2012年   754篇
  2011年   788篇
  2010年   678篇
  2009年   628篇
  2008年   611篇
  2007年   612篇
  2006年   584篇
  2005年   492篇
  2004年   474篇
  2003年   405篇
  2002年   468篇
  2001年   344篇
  2000年   306篇
  1999年   217篇
  1998年   186篇
  1997年   131篇
  1996年   124篇
  1995年   104篇
  1994年   89篇
  1993年   54篇
  1992年   66篇
  1991年   44篇
  1990年   41篇
  1989年   33篇
  1988年   34篇
  1987年   20篇
  1986年   28篇
  1985年   34篇
  1984年   27篇
  1983年   14篇
  1982年   21篇
  1981年   9篇
  1980年   7篇
  1978年   13篇
  1977年   4篇
  1976年   8篇
  1975年   5篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
Abstract

This article contains the nonlocal elasticity theory to capture size effects in functionally graded (FG) nano-rod under magnetic field supported by a torsional foundation. Torque effect of an axial magnetic field on an FG nano-rod has been defined using Maxwell’s relation. The material properties were assumed to vary according to the power law in radial direction. The Navier equation and boundary conditions of the size-dependent FG nano-rod were derived by the Hamilton’s principle. These equations were solved by employing the generalized differential quadrature method (GDQM). Presented model has the ability to turn into the classical model if the material length scale parameter is taken to be zero. The effects of some parameters, such as inhomogeneity constant, magnetic field and small-scale parameter, were studied. As an important result of this study can be stated that an FG nano-rod model based on the nonlocal elasticity theory behaves softer and has smaller natural frequency.  相似文献   
132.
Metal embedded in metal oxide nanoparticles are active as catalyst in plethora of industrially important reactions. Herein, embedded Cu@Fe2O3 nanoparticles was synthesized via a one step hydrothermal strategy which selectively catalyzes the hydrogenation of diverse nitroaromatics in H2O at room temperature. The remarkable catalytic performance is due to the successful hybridization of metallic Cu and Fe2O3 which in turn allows easy electroflipping between various oxidation states of Cu and Fe. Azo- and azoxy-compounds are not formed during the catalyzed process. This evidently establish that the hydrogenation of nitroaromatics proceeds via direct route with >99% selectivity to the corresponding anilines.  相似文献   
133.
134.
We investigated a new Fe26.7Ni26.7Ga15.6Mn20Si11 high entropy alloy (HEA) without the rare earth element. The structural, magnetic and magnetocaloric properties of the resulting materials are presented. The HEAs successfully is produced by the arc melting with suction casting method. The crystal structures are characterised through multiphase Rietveld refinement of X-ray diffraction data. The structure of the HEAs was found to be the body centred cubic (bcc). In the magnetic measurements, the ferromagnetic to paramagnetic transition was obtained in the range of 300–400 K. With the employed suction casting method; the Fe26.7Ni26.7Ga15.6Mn20Si11 HEA shows the best magnetocaloric properties as 1.59 Jkg−1K−1 maximum magnetic entropy change (0–2 T) and 75.68 Jkg-1 refrigeration capacity after the annealing process.  相似文献   
135.
The magnetic behavior of the fluorene bridged verdazyl diradicals has been studied theoretically in their neutral and deprotonated states. The deprotonation of C9‐H site of the fluorene ring opens a new coupling pathway, which changes the nature of magnetic coupling. The transmission spectra analysis reveals that the transmission through fluorine has also increased due to the opening of a new coupling path after deprotonation.  相似文献   
136.
Superparamagnetic iron oxide nanoparticles (SPIONs) have become important tools for the imaging and detecting of prevalent diseases for many years. Scientists usually harness their attraction to a static magnetic field (SMF) to increase targeting efficiency and minimize side effects. To prolong blood circulation time and minimize reticuloendothelial system clearance, SPIONs are increasingly designed with a negatively charged surface. Understanding how a SMF affects the SPIONs with a negative surface charge is fundamental to any potential downstream applications of SPIONs as drug delivery carriers and bio‐separation nanoparticles. The goal of our study is to investigate the effect of SMF treatment (204 mT) on the in vitro and in vivo protein corona formed on negatively charged SPIONs. The results reveal that the amount of protein and the composition of protein corona is directly related to the SMF treatment. Compared with the in vivo protein corona, SMF treatment exercises considerable influence on the composition of the in vitro protein corona. The in vitro protein corona formed on SPIONs modulates the secretion of inflammatory cytokines from cells. To the best of our knowledge, this report describes the first demonstration of a SMF as an influencing factor on protein corona formation in vivo. Our results help to elucidate the biological mechanisms of SPIONs with SMF treatment and suggest that the protein corona effect should be considered during the development of a magnetic target.  相似文献   
137.
Near‐infrared emissive (NIR) porphyrin‐implanted carbon nanodots (PCNDs or MPCNDs) are prepared by selectively carbonization of free base or metal complexes [M = Zn(II) or Mn(III)] of tetra‐(meso‐aminophenyl)porphyrin in the presence of citric acid. The as‐prepared nanodots exhibit spontaneously NIR emission, small size, good aqueous dispersibility, and favorable biocompatibility characteristic of both porphyrins and pristine carbon nanodots. The subcellular localization experiment of nanodots indicates a lysosome‐targeting feature. And the in vitro photodynamic therapy (PDT) results on HeLa cells indicate the nanodots alone have no adverse effect on tumor cells, but display remarkable photodynamic efficacy upon irradiation. Moreover, MnPCNDs containing paramagnetic Mn(III) ions, which possesses good biocompatibility, NIR luminescence, and magnetic resonance imaging and efficient singlet oxygen production, are further studied in magnetic resonance imaging‐guided photodynamic therapy in vivo.  相似文献   
138.
A model Liouville equation is proposed for a system composed of an ion moving in a solvent fluid. Using this model, explicit results are obtained for the Ohmic conductivityL and the Hall conductivityh. These results are then used to calculate the Hall coefficientR = ehL–2, which is a measure of the effect of non-Brownian motion, for several charge carriers of interest. Our results are in agreement with earlier findings based on a stochastic model which predictR > 1 for H+(aq). Our results also indicate thatR 1 for charge carriers such as Na+, Cl, and K+ which have a mass greater than that of a solvent molecule (here taken as 18 amu).This research was supported in part by grants from the National Science Foundation and by the Research Foundation of the State University of New York.  相似文献   
139.
A theoretical framework for treating the effects of magnetic fieldH on the pairing theory of superconductivity is considered, where the field is taken in an arbitrary direction with respect to crystal axes. This is applicable to closed, as well as open normal state Fermi surface (FS), including simple layered metals. The orbital effects of the magnetic field are treated semiclassically while retaining the full anisotropic paramagnetic contribution. Explicit calculations are presented in the limits |H| → |H c2(T)|,T ∼ 0 andTT c(|H|), |H| ∼ 0. Effects of weak nonmagnetic impurity scattering, without vertex corrections, have also been taken into account in a phenomenological way. The final results for the case of open FS and layered materials are found to differ considerably from those of the closed FS. For example, an important parameter,h(T=0)=|Hc2(0)|/[-Tδ|H c2 TT]T{s0} for the case of a FS open ink z-direction with thek z-bandwidth, 4t 3, very small compared to the Fermi energy,E F, is close to 0.5906, compared to 0.7273 for the closed FS, in the clean limit. Analytical results are given for the magnetic field dependence ofT c and the temperature dependence of H c2 for a model of layered superconductors with widely open FS. For a set of band structure parameters for YBa2Cu3O7 used elsewhere, we find reasonable values for the upper critical fieldH c2(0), the slope (dH c2/dT)T c0, anisotropic coherence lengths ζi(T=0),i=x, y, z, and (dT c/d|H|)|H| → 0.  相似文献   
140.
The effects of cubic crystal fields on the saturation magnetic moment of Sm3+ ion in ferromagnetic compounds have been investigated. In samarium compounds with magnetic elements, the exchange fieldH ex acting on Sm3+ ion is taken to be proportional to the sublattice magnetization of the magnetic element, while in compounds with nonmagnetic elementsH ex is taken to be proportional to the spin average of the Sm3+ ion and is determined self-consistently. In both types of compoundsH ex is assumed to be along [001] direction. The saturation magnetic moment is calculated by taking into account the admixture of excited (J=7/2 andJ=9/2) levels into the ground (J=5/2) level of Sm3+ ion by crystal fields and exchange fields. It is shown that depending upon the strength, the crystal fields quench or enhance the magnetic moment from the free ion value, and in some cases force Sm3+ ion to behave effectively like an (L+S) ion rather than an (LS)ion. The crystal fields may have important bearing on the performance of samarium compounds as permanent magnet materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号