首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8015篇
  免费   1133篇
  国内免费   450篇
化学   4124篇
晶体学   34篇
力学   828篇
综合类   189篇
数学   1943篇
物理学   2480篇
  2024年   13篇
  2023年   110篇
  2022年   348篇
  2021年   321篇
  2020年   396篇
  2019年   273篇
  2018年   248篇
  2017年   350篇
  2016年   409篇
  2015年   362篇
  2014年   475篇
  2013年   483篇
  2012年   498篇
  2011年   465篇
  2010年   388篇
  2009年   475篇
  2008年   436篇
  2007年   452篇
  2006年   434篇
  2005年   367篇
  2004年   333篇
  2003年   283篇
  2002年   232篇
  2001年   189篇
  2000年   190篇
  1999年   151篇
  1998年   160篇
  1997年   112篇
  1996年   96篇
  1995年   104篇
  1994年   82篇
  1993年   70篇
  1992年   60篇
  1991年   34篇
  1990年   31篇
  1989年   25篇
  1988年   14篇
  1987年   16篇
  1986年   16篇
  1985年   26篇
  1984年   16篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   6篇
  1979年   14篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1971年   2篇
排序方式: 共有9598条查询结果,搜索用时 0 毫秒
191.
A mechanistic density functional theory study of acetylene [2+2+2] cyclotrimerization to benzene catalyzed by RhI half metallocenes is presented. The catalyst fragment contains a heteroaromatic ligand, that is, the 1,2‐azaborolyl (Ab) or the 3a,7a‐azaborindenyl (Abi) anions, which are isostructural and isoelectronic to the hydrocarbon cyclopentadienyl (Cp) and indenyl (Ind) anions, respectively, but differ from the last ones on having two adjacent carbon atoms replaced with a boron and a nitrogen atom. The better performance of either the classic hydrocarbon or the heteroaromatic catalysts is found to depend on the different mechanistic paths that can be envisioned for the process. The present analyses uncover and explain general structure–reactivity relationships that may serve as rational design principles. In particular, we provide evidence of a reverse indenyl effect.  相似文献   
192.
A tool for the automated assembly, molecular optimization and property calculation of supramolecular materials is presented. stk is a modular, extensible and open‐source Python library that provides a simple Python API and integration with third party computational codes. stk currently supports the construction of linear polymers, small linear oligomers, organic cages in multiple topologies and covalent organic frameworks (COFs) in multiple framework topologies, but is designed to be easy to extend to new, unrelated, supramolecules or new topologies. Extension to metal–organic frameworks (MOFs), metallocycles or supramolecules, such as catenanes, would be straightforward. Through integration with third party codes, stk offers the user the opportunity to explore the potential energy landscape of the assembled supramolecule and then calculate the supramolecule's structural features and properties. stk provides support for high‐throughput screening of large batches of supramolecules at a time. The source code of the program can be found at https://github.com/supramolecular-toolkit/stk . © 2018 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
193.
The terminal carbide ligands in [(Cy3P)2X2Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge‐transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ‐donor properties of carbide complexes to be tunable.  相似文献   
194.
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme‐catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non‐ inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside‐modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular‐recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non‐inactivable derivatives a challenging task.  相似文献   
195.
The present study deals with preparation and optimization of a novel chitosan hydrogel‐based matrix by suspension cross‐linking method for controlled release of Depo‐Medrol. The controlled release of Depo‐Medrol for effective Rheumatoid arthritis disease has become an imperative field in the drug delivery system. In this context, it was intended to optimize loading circumstances by experimental design and also study the release kinetics of Depo‐Medrol entrapped in the chitosan matrix in order to obtain maximal efficiency for drug loading. The optimum concentrations of chitosan (2.5 g), glutaraldehyde (3.05 μL) and Depo‐Medrol (0.1 mg) were set up to achieve the highest value of drug loaded and the most sustained release from the chitosan matrix. In vitro monitoring of drug release kinetic using high‐performance liquid chromatography showed that 73% of the Depo‐Medrol was released within 120 min, whereas remained drug was released during the next 67 h. High correlation between first‐order and Higuchi's kinetic models indicates a controlled diffusion of Depo‐Medrol through the surrounding media. Moreover, recovery capacity >82% and entrapment efficiency of 58–88% were achieved under optimal conditions. Therefore, the new synthesized Depo Medrol–chitosan is an applicable appliance for arthritis therapy by slow release mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
196.
A picolinaldehyde–melamine copper complex was loaded on a magnetic Fe3O4 core, so that it contained 0.33 mmol of Cu per gram, and was used as an efficient catalyst. The as‐synthesized catalyst was characterized using various techniques, including Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and thermogravimetric analysis. The catalyst was used to activate the raw materials in the synthesis of hexahydroquinoline derivatives in one‐pot four‐component reactions. Low reaction time (minutes versus half an hour), solvent‐free condition and magnetically separable catalyst are some salient features of the developed catalyst. Also, the optimum amount of catalyst and temperature were determined as 0.07 g and 87.6 °C, respectively, which were obtained using response surface methodology and optimization techniques.  相似文献   
197.
Particle coating is an important method that can be used to expand particle-technology applications. Coated-particle design and preparation for nuclear fuel-element trajectory tracing were focused on in this paper. Particles that contain elemental cobalt were selected because of the characteristic gamma ray spectra of 60Co. A novel particle-structure design was proposed by coating particles that contain elemental cobalt with a high-density silicon-carbide (SiC) layer. During the coating process with the high-density SiC layer, cobalt metal was formed and diffused towards the coating, so an inner SiC–CoxSi layer was designed and obtained by fluidized-bed chemical vapor deposition coupled with in-situ chemical reaction. The coating layers were studied by X-ray diffractometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy techniques. The chemical composition was also determined by inductively coupled plasma optical emission spectrometry. The novel particle design can reduce the formation of metallic cobalt and prevent cobalt diffusion in the coating process, which can maintain safety in a nuclear reactor for an extended period. The experimental results also validated that coated particles maintain their structural integrity at extremely high temperatures (∼1950 °C), which meets the requirements of next-generation nuclear reactors.  相似文献   
198.
A highly effective and convenient “bis‐click” strategy was developed for the template‐independent circularization of single‐stranded oligonucleotides by employing copper(I)‐assisted azide–alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7‐deaza‐2′‐deoxyadenosine and 2′‐deoxyuridine residues with different side chains were used in solid‐phase synthesis with phosphoramidite chemistry. The bis‐click ligation of linear 9‐ to 36‐mer oligonucleotides with 1,4‐bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9‐mers. Compared with linear duplexes, circular bis‐click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis‐click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides.  相似文献   
199.
CH3NH3PbBr3 perovskite quantum dots (PQDs) are synthesized by using four different linear alkyl phosphonic acids (PAs) in conjunction with (3-aminopropyl)triethoxysilane (APTES) as capping ligands. The resultant PQDs are characterized by means of XRD, TEM, Raman spectroscopy, FTIR spectroscopy, UV/Vis, photoluminescence (PL), time-resolved PL, and X-ray photoelectron spectroscopy (XPS). PA chain length is shown to control the PQD size (ca. 2.9–4.2 nm) and excitonic absorption band positions (λ=488–525 nm), with shorter chain lengths corresponding to smaller sizes and bluer absorptions. All samples show a high PL quantum yield (ca. 46–83 %) and high PL stability; this is indicative of a low density of band gap trap states and effective surface passivation. Stability is higher for smaller PQDs; this is attributed to better passivation due to better solubility and less steric hindrance of the shorter PA ligands. Based on the FTIR, Raman, and XPS results, it is proposed that Pb2+ and CH3NH3+ surface defects are passivated by R−PO32− or R−PO2(OH), whereas Br surface defects are passivated by R−NH3+ moieties. This study establishes the combination of PA and APTES ligands as a highly effective dual passivation system for the synergistic passivation of multiple surface defects of PQDs through primarily ionic bonding.  相似文献   
200.
The combinatorial object named t-spontaneous emission error design (t-SEED) was proposed by Beth et al. in 2003 in order to correct errors caused by quantum jumps. The newly rising category of t-SEEDs has been studied extensively in recent years. Especially, the maximal possible dimensions for 2-SEEDs with block size 3 were determined completely; lower bounds on 2-SEEDs were established by applying affine groups. In this paper we utilize the action of twisted affine groups on finite fields and obtain new lower bounds on the dimensions of 2-(q2,k;m) SEEDs, some of which outperform the known ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号