首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1297篇
  免费   359篇
  国内免费   29篇
化学   106篇
晶体学   12篇
力学   198篇
综合类   8篇
数学   68篇
物理学   1293篇
  2024年   12篇
  2023年   32篇
  2022年   52篇
  2021年   87篇
  2020年   74篇
  2019年   44篇
  2018年   62篇
  2017年   83篇
  2016年   95篇
  2015年   41篇
  2014年   155篇
  2013年   62篇
  2012年   64篇
  2011年   99篇
  2010年   92篇
  2009年   71篇
  2008年   74篇
  2007年   59篇
  2006年   59篇
  2005年   54篇
  2004年   44篇
  2003年   41篇
  2002年   28篇
  2001年   36篇
  2000年   31篇
  1999年   14篇
  1998年   22篇
  1997年   14篇
  1996年   21篇
  1995年   15篇
  1994年   13篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1685条查询结果,搜索用时 15 毫秒
931.
The aim is to design a layered metamaterial with high attenuation coefficient and high in-plane stiffness-to-density ratio using homogenization to calculate and optimize the dynamic effective stiffness and mass density of layered periodic composites (phononic layers) over a broad frequency band. This is achieved by: (1) minimizing the frequency range of the first pass band, (2) maximizing the frequency range of the stop band, and (3) creating local resonance over the second pass band. To verify the theoretical calculation, laboratory samples were fabricated and their attenuation coefficient were measured and compared with the theoretical results. It is observed that over 4–20 kHz frequency range the attenuation per unit length in the optimally designed composite can exceed 500 dB/m; which increases with increasing frequency. A dynamic Ashby chart, depicting attenuation coefficient vs. in-plane stiffness-to-density ratio, is presented for various engineering materials and is compared with the fabricated metamaterial to show the significance of our design. This method can be used in variety of applications for stress wave management, e.g., in addition to match the impedance of the resulting composite to that of its surrounding medium to minimize (or essentially eliminate) stress wave reflection.  相似文献   
932.
The governing equation of the first arrival time of a monotonically propagating front (wavefront or shock front) in an inhomogeneous moving medium is an anisotropic eikonal equation, called the generalized eikonal equation in moving media. When the ambient medium is at rest, this equation reduces to the well-known (isotropic) eikonal equation in which the characteristic direction coincides with the normal direction of the propagating front. The fast marching method is an efficient method for computing the first arrival time of a propagating front as the approximate solution of the isotropic eikonal equation. The fast marching method inherits the property that the characteristic direction coincides with the normal direction at every point on the propagating wavefront and therefore is well suited for the eikonal equation. Due to anisotropic nature, this property does not hold in the case of front propagation in a moving medium. Thus, the fast marching method cannot be directly used for the generalized eikonal equation and needs some suitable modifications. We recently proposed a characteristic fast marching method on a rectangular grid for the generalized eikonal equation (Dahiya et al., 2013) and shown numerically that this method is stable, accurate, and easy to update to second order approximations. In the present work, we generalize the method on structured triangular grids. We compare the numerical solution obtained using our method with the ray theory solution to show that the method captures accurately the viscosity solution of the generalized eikonal equation. We use the method to study some interesting geometrical features of an initially planar wavefront propagating in a medium with Taylor–Green type vortices.  相似文献   
933.
Acoustic axes are directions in anisotropic elastic media, in which phase velocities of two or three plane waves (PP, S1S1 or S2S2 waves) coincide. Acoustic axes are important, because they can cause singularities in the field of polarization vectors and anomalies in the shape of the slowness surface. The maximum number of acoustic axes in triclinic anisotropy is 16, and their directions depend on anisotropy parameters in a complicate way. Under weak anisotropy approximation this dependence simplifies and the directions of acoustic axes can be used for the inversion for anisotropy parameters. The maximum acoustic axes under weak anisotropy is 16, the minimum number of acoustic axes is zero. In the inversion, we can retrieve 13 combinations of anisotropy parameters provided we use directions of 7 acoustic axes at least. Under weak anisotropy approximation, the directions of acoustic axes are insensitive to strength of anisotropy; hence we cannot invert for absolute values of weak anisotropy parameters, but only for their relative values. Numerical tests have shown that the inversion is applicable only to very weak anisotropy with strength of less than 5%, provided that the acoustic axes used in the inversion are determined with an accuracy of 0.1°0.1° or better. In this case the inversion yields an average error for elastic parameters of less than 10%. In order to invert for the total set of 21 anisotropy parameters it is necessary to combine the measurements of the directions of the acoustic axes with measurements of other attributes of elastic waves in anisotropic media.  相似文献   
934.
In this paper, a novel single microphone channel-based speech enhancement technique is presented. While most of the conventional nonnegative matrix factorization-based approaches focus on generating a basis matrix of speech and noise for enhancement, the proposed algorithm performs an additional process to reconstruct speech from noisy speech when these two elements are highly overlapped in selected spectral bands. This process involves a log-spectral amplitude based estimator, which provides the spectrotemporal speech presence probability to obtain a more accurate reconstruction. Moreover, the proposed algorithm applies an unsupervised learning method to the input noise, so it is adaptable to any type of environmental noise without a pre-trained dictionary. The experimental results demonstrate that the proposed algorithm obtains improved speech enhancement performance compared with conventional single channel-based approaches.  相似文献   
935.
The investigation reported in this paper was centered on the application of the acoustic emissions (AE) technology for characterising the defect sizes on a radially loaded bearing. An experimental test-rig was designed such that defects of varying sizes could be seeded onto the outer and inner races of a test bearing. The aim of this investigation was to correlate defect size with specific AE parameters and to ascertain the relationship between the duration of AE transient bursts associated with seeded defects to the actual geometric size of the defect. In addition, the use of AE to detect inner race defects was explored particularly as this known to be fraught with difficulty. It is concluded that the geometric defect size of outer race defects can be determined from the AE waveform.  相似文献   
936.
937.
The aim of this work is to investigate the absolute phase information in resonance acoustic scattering by spheres and cylinders and place this work in the broader context of scattering in which the properties of the magnitude and (processed) phase have been examined in a more general way than in the classical resonance scattering theory (RST). Here, comparisons are made between the classical and modified RST formalisms of acoustic resonance scattering. Experimental and theoretical backscattering form functions are obtained and discussed. It is shown that the magnitude and processed (unwrapped) phase can be correctly obtained through the classical RST, suggesting that the modified RST formalism offers little new practical advantage. Furthermore, the absolute phase is shown to be very sensitive to object’s resonances, suggesting that the unwrapped phase may be considered as an efficient tool, along with the magnitude information, to carry out remote (active) classification of targets in underwater acoustics applications. The combination of absolute phase information with the magnitude data offers a complementary advantage in the identification of resonances from cylinders and spheres.  相似文献   
938.
Keita Iga   《Fluid Dynamics Research》2001,28(6):1311-486
Normal modes which exist in stratified compressible fluids are investigated. For the analysis, the conservation of the number of zeros in an eigenfunction is used. It is generally shown that the condition for transition modes such as Lamb-wave modes to exist is determined only by boundary conditions. This mathematical result is physically explained by boundary waves, and this explanation crucially depends on which is larger, gravity acceleration g or the product of Brunt–Väisälä frequency and sound speed Ncs. This theory gives a guide to choose boundary conditions free of spurious boundary waves. It also explains why a distinct Lamb wave is not found in the ocean unlike in the atmosphere: it is simply because the ocean is not deep enough, but if the ocean were stratified a little more strongly than it is, the Lamb wave would not exist in the ocean however deep it might be.  相似文献   
939.
Double-grid Chebyshev spectral elements for acoustic wave modeling   总被引:1,自引:0,他引:1  
Gza Seriani 《Wave Motion》2004,39(4):351-360
Highly accurate algorithms are needed for modeling wave propagation phenomena in realistic media. The spectral element methods, either based on a Chebyshev or a Legendre polynomial basis, have shown their excellent properties of high accuracy and flexibility in describing complex models outperforming other techniques. In contrast with standard grid methods, which use dense spatial meshes, spectral element methods discretize the computational domain in a very coarse mesh. With constant-property elements, this fact may in some cases reduce seriously the computational efficiency. For instance, if the medium is finely heterogeneous, it may need to be described in a much finer way than the acoustic wave field. The double-grid approach presented in this work is a viable way for overcoming this lack of the method and for handling problems where the medium changes continuously or even sharply on the small scale. The variation in the properties is taken into account by using an independent set of shape functions defined on a temporary local grid in such a way that either the small scale fluctuations are accurately handled, without the need of a global finer grid, and the macroscopic wave field propagation is solved with no loose of computational efficiency.  相似文献   
940.
The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 × 106 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m2). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce a strong variation in casing boundary layer properties in the region measured. The casing static pressure measurements follow trends that can be expected from the blade loading distribution, with maximum values immediately upstream of the rotor inlet plane, and then a decreasing trend with axial position as the flow is turned and accelerated in the relative frame of reference. The time-mean static pressure measurements on the casing wall also reveal distinct circumferential variations that are small in comparison to the large pressure gradient in the axial direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号