首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   125篇
  国内免费   76篇
化学   793篇
力学   4篇
综合类   1篇
数学   82篇
物理学   464篇
  2024年   2篇
  2023年   7篇
  2022年   13篇
  2021年   23篇
  2020年   35篇
  2019年   26篇
  2018年   25篇
  2017年   32篇
  2016年   38篇
  2015年   40篇
  2014年   49篇
  2013年   137篇
  2012年   71篇
  2011年   63篇
  2010年   48篇
  2009年   61篇
  2008年   67篇
  2007年   84篇
  2006年   69篇
  2005年   45篇
  2004年   49篇
  2003年   51篇
  2002年   53篇
  2001年   33篇
  2000年   31篇
  1999年   21篇
  1998年   24篇
  1997年   18篇
  1996年   7篇
  1995年   16篇
  1994年   12篇
  1993年   10篇
  1992年   11篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   9篇
  1986年   6篇
  1985年   4篇
  1984年   8篇
  1982年   6篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1344条查询结果,搜索用时 0 毫秒
71.
Hydrogen bonding interaction as one type of non-covalent force has proven itself to be highly efficient for constructing structurally unique artificial secondary structures. Here, the structure of Naryl-substituted anthranilamide in solution is demonstrated by various NMR technique, the intramolecular hydrogen bonds between amide attached to arylamine of the same ring is proposed, which is supported by its crystal structure in the solid phase. The substituent on the nitrogen atom of arylamine plays an important role in forming the presence of intramolecular hydrogen bonds. The chemical shift of the Naryl-H downfield changes obviously, due to the formation of intramolecular hydrogen bonds and the deshielding effect of oxygen, and the neighboring C–H is activated and shows downfield protonic signal too. The presence of intramolecular hydrogen bonds probably provides the explanation for the transformation from Naryl-substituted anthranilamide to imine, which could be converted into 2-aryl quinazolinone finally.  相似文献   
72.
In the last years, the development of new methods for analyzing accurate and precise individual metalloproteins is of increasing importance, since numerous metalloproteins are excellent biomarkers of oxidative stress and diseases. In that way, methods based on the use of post column isotopic dilution analysis (IDA) or enriched protein standards are required to obtain a sufficient degree of accuracy, precision and high limits of detection. This paper reports the identification and absolute quantification of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in cytosol and mitochondria from mice hepatic cells using a innovative column switching analytical approach. The method consisted of orthogonal chromatographic systems coupled to inductively coupling plasma-mass spectrometry equipped with a octopole reaction systems (ICP-ORS-MS) and UV detectors: size exclusion fractionation (SEC) of the cytosolic and mitochondrial extracts followed by online anion exchange chromatographic (AEC) separation of Cu/Zn containing species. After purification, Cu,Zn-SOD was identified after tryptic digestion by molecular mass spectrometry (MS). The MS/MS spectrum of a doubly charged peptide was used to obtain the sequence of the protein using the MASCOT searching engine. This optimized methodology reduces the time of analysis and avoids the use of sample preconcentration and clean-up procedures, such as cut-off centrifuged filters, solid phase extraction (SPE), precipitation procedures, off-line fractions insolates, etc. In this sense, the method is robust, reliable and fast with typical chromatographic run time less than 20 min. Precision in terms of relative standard deviation (n = 5) is of 3–5% and detection limits is 0.21 ng Cu g−1.  相似文献   
73.
Streptothricin‐F (STT‐F), one of the early‐discovered antibiotics, consists of three components, a β‐lysine homopolymer, an aminosugar D ‐gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long‐lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high‐resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an FeII‐dependent double hydroxylation reaction converting L ‐Arg into (3R,4R)‐(OH)2‐L ‐Arg via (3S)‐OH‐L ‐Arg, while OrfR catalyzes an unusual PLP‐dependent elimination/addition reaction cyclizing (3R,4R)‐(OH)2‐L ‐Arg to the six‐membered (4R)‐OH‐capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT‐F by a feeding experiment.  相似文献   
74.
Alkali metal alkoxides are widely used in chemistry due to their Brønsted basic and nucleophilic properties. Potassium alkoxides assist alkyllithium in the metalation of hydrocarbons in Lochmann-Schlosser-bases. Both compounds form mixed aggregates, which enhance the thermal stability, solubility, and the basic reactivity of these mixtures. A very unusual spherical mixed alkoxy aggregate was discovered by Grützmacher et al., where a central dihydrogen phosphide anion is surrounded by a highly dynamic shell of thirteen sodium atoms and a hull of twelve tert-butoxide groups. This structural motif can be reproduced by a reaction of trimethylsilyl compounds of methane, halogens, or pseudo-halogens with excess sodium tert-butoxide. A nucleophilic substitution releases the corresponding anion, which is then encapsulated by the sodium alkoxide units. The compounds are soluble in hydrocarbon solvents, enabling studies of solutions by high-resolution NMR spectroscopy and IR/Raman studies of the crystalline materials.  相似文献   
75.
Hatton和Richards通过对酰胺分子的~1H NMR谱溶剂效应的研究,提出了DMF与苯生成分子络合物的模型.如果络合物按1:1生成,那么将出现一个“饱和点”,在这点上甲基的芳香溶剂诱导位移(ASIS)的变化趋势或程度将出现一个明显的变化,事实上随着苯的摩尔分数从0到1逐渐增加时,化学位移总是有规则的逐渐移向高场.这就显示了分子络合物观点的局限性.它能被一些研究者所支持和接受,是因为它能够解释两个甲基共振峰先重合而后又分离的现象.  相似文献   
76.
An intermolecular Pd/PPh3‐catalyzed transesterification of diallyl carbonate with glycerol to generate glycerol carbonate has been developed. Analysis of the reaction kinetics in THF indicates a first‐order dependence on Pd and diallyl carbonate, that the Pd bears two phosphines during the turnover limiting event, and that increasing the glycerol concentration inhibits reaction, possibly via change in the polarity of the medium. 13C isotopic labeling studies demonstrate that the Pd‐catalyzed transesterification requires at least one allyl carbonate moiety and that there is rapid equilibrium of the allyl carbonate with CO2 in solution, even when present only at low concentrations. A mechanism that is consistent with these results involves oxidative addition of the allyl carbonate to Pd followed by reversible decarboxylation, with the intermediate η1‐ and η3‐allyl Pd alkoxides mediating direct and indirect transesterification reactions with the glycerol. Using this model, successful simulations of the kinetics of reactions conducted under atmospheres of N2 or CO2 could be achieved, including switching in selectivity between etherification and transesterification in the early stages of reaction. Reactions with the higher polyols threitol and erythritol are also efficient, generating the terminal (1,2) monocarbonates with high selectivity.  相似文献   
77.
Abstract

The mass spectra of 2-alkyl-2-oxo-1,3,2-dioxa-phosphorinane and-phosphepane showed that the ring opening was in competition with the cleavage of the P[sbnd]C bond. According to the fragmentation pathway, which was dependent on the structure of exocyclic substituents on phosphorus, the 2-alkyl-2-oxo-1,3,2-di-oxa-phosphorinanes can be classified in two categories. The main process in category A was the ring opening and/or C[sbnd]C bond cleavage. While in category B the cleavage of P[sbnd]C bond was predominant. However, for 2-alkyl-2-oxo-1,3,2-dioxa-phosphepane. no matter how the structure of 2-alkyl group was, the ring opening was a dominant process.  相似文献   
78.
测定了在Ce0.6Zr0.4O2,Ce0.6Zr0.35Y0.05O2,Pr0.6Zr0.4O2和Pr0.6Zr0.35Y0.05O2 (分别表示为CZ,CYZ,PZ和PYZ)样品表面上的CO氧化反应和18O-16O 同位素交换反应.结果表明: 在CZ和PZ系列固熔中掺杂Y3 离子可以改善晶格氧的迁移速度;PZ和PZY的晶格氧比CZ 和CZY 的晶格氧具有更高的氧化反应活性.其原因是将Y3 掺杂到Ce0.6Zr0.4O2 或Pr0.6Zr0.4O2晶格中,增加了样品的氧空位浓度,从而提高了晶格氧的迁移性质,而PrOx比CeO2具有更低温度的氧化还原性质,因此PZ和PZY的晶格氧比CZ 和CZY 的晶格氧具有更高的氧化反应活性.  相似文献   
79.
A palladium‐catalyzed carbonylative approach for the direct conversion of (hetero)aryl bromides into their α,α‐bis(trifluoromethyl)carbinols is described, and it employs only stoichiometric amounts of carbon monoxide and trifluoromethyltrimethylsilane. In addition, aryl fluorosulfates proved highly compatible with these reaction conditions. The method is tolerant of a diverse set of functional groups, and it is adaptable to late‐stage carbon‐isotope labeling.  相似文献   
80.
The possibility of excited‐state protomeric shifts in the biologically important molecule, alloxan, is investigated. We have focused on the S1 and T1 excited states of alloxan and its hydroxy tautomers. Modifications brought in by excitation on the relative stabilities, activation barriers, and optimized geometries, computed at the MNDO, AM1, and PM3 levels of approximation, have been discussed for both excited electronic states. The absorption and fluorescence spectra for the three tautomers are also discussed. Results show significant changes in the geometries on excitation, although the changes are similar for the singlet and triplet excited states. Though the relative stability orders do not change, the 2‐hydroxy tautomer is stabilized, while the 4‐hydroxy tautomer gets destabilized on excitation. The excited states are (n,π*) states, involving the promotion of a nonbonding oxygen lone pair from the CO? CO? CO moiety, which explains why the oxygens of this group become less basic and the 4‐hydroxy tautomer gets destabilized on excitation. However, the activation barriers do not reduce significantly on excitation, and this precludes the possibility of ground‐ or excited‐state proton transfer in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号