全文获取类型
收费全文 | 1143篇 |
免费 | 125篇 |
国内免费 | 76篇 |
专业分类
化学 | 793篇 |
力学 | 4篇 |
综合类 | 1篇 |
数学 | 82篇 |
物理学 | 464篇 |
出版年
2024年 | 2篇 |
2023年 | 7篇 |
2022年 | 13篇 |
2021年 | 23篇 |
2020年 | 35篇 |
2019年 | 26篇 |
2018年 | 25篇 |
2017年 | 32篇 |
2016年 | 38篇 |
2015年 | 40篇 |
2014年 | 49篇 |
2013年 | 137篇 |
2012年 | 71篇 |
2011年 | 63篇 |
2010年 | 48篇 |
2009年 | 61篇 |
2008年 | 67篇 |
2007年 | 84篇 |
2006年 | 69篇 |
2005年 | 45篇 |
2004年 | 49篇 |
2003年 | 51篇 |
2002年 | 53篇 |
2001年 | 33篇 |
2000年 | 31篇 |
1999年 | 21篇 |
1998年 | 24篇 |
1997年 | 18篇 |
1996年 | 7篇 |
1995年 | 16篇 |
1994年 | 12篇 |
1993年 | 10篇 |
1992年 | 11篇 |
1991年 | 6篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 7篇 |
1987年 | 9篇 |
1986年 | 6篇 |
1985年 | 4篇 |
1984年 | 8篇 |
1982年 | 6篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有1344条查询结果,搜索用时 15 毫秒
61.
Li-Xia Wang Ben-Quan Hu Jun-Feng Xiang Jie Cui Xiang Hao Tong-Ling Liang Ya-Lin Tang 《Tetrahedron》2014
Hydrogen bonding interaction as one type of non-covalent force has proven itself to be highly efficient for constructing structurally unique artificial secondary structures. Here, the structure of Naryl-substituted anthranilamide in solution is demonstrated by various NMR technique, the intramolecular hydrogen bonds between amide attached to arylamine of the same ring is proposed, which is supported by its crystal structure in the solid phase. The substituent on the nitrogen atom of arylamine plays an important role in forming the presence of intramolecular hydrogen bonds. The chemical shift of the Naryl-H downfield changes obviously, due to the formation of intramolecular hydrogen bonds and the deshielding effect of oxygen, and the neighboring C–H is activated and shows downfield protonic signal too. The presence of intramolecular hydrogen bonds probably provides the explanation for the transformation from Naryl-substituted anthranilamide to imine, which could be converted into 2-aryl quinazolinone finally. 相似文献
62.
Dr. Alvaro Gordillo Prof. Dr. Guy C. Lloyd‐Jones 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(9):2660-2665
An intermolecular Pd/PPh3‐catalyzed transesterification of diallyl carbonate with glycerol to generate glycerol carbonate has been developed. Analysis of the reaction kinetics in THF indicates a first‐order dependence on Pd and diallyl carbonate, that the Pd bears two phosphines during the turnover limiting event, and that increasing the glycerol concentration inhibits reaction, possibly via change in the polarity of the medium. 13C isotopic labeling studies demonstrate that the Pd‐catalyzed transesterification requires at least one allyl carbonate moiety and that there is rapid equilibrium of the allyl carbonate with CO2 in solution, even when present only at low concentrations. A mechanism that is consistent with these results involves oxidative addition of the allyl carbonate to Pd followed by reversible decarboxylation, with the intermediate η1‐ and η3‐allyl Pd alkoxides mediating direct and indirect transesterification reactions with the glycerol. Using this model, successful simulations of the kinetics of reactions conducted under atmospheres of N2 or CO2 could be achieved, including switching in selectivity between etherification and transesterification in the early stages of reaction. Reactions with the higher polyols threitol and erythritol are also efficient, generating the terminal (1,2) monocarbonates with high selectivity. 相似文献
63.
The possibility of excited‐state protomeric shifts in the biologically important molecule, alloxan, is investigated. We have focused on the S1 and T1 excited states of alloxan and its hydroxy tautomers. Modifications brought in by excitation on the relative stabilities, activation barriers, and optimized geometries, computed at the MNDO, AM1, and PM3 levels of approximation, have been discussed for both excited electronic states. The absorption and fluorescence spectra for the three tautomers are also discussed. Results show significant changes in the geometries on excitation, although the changes are similar for the singlet and triplet excited states. Though the relative stability orders do not change, the 2‐hydroxy tautomer is stabilized, while the 4‐hydroxy tautomer gets destabilized on excitation. The excited states are (n,π*) states, involving the promotion of a nonbonding oxygen lone pair from the CO? CO? CO moiety, which explains why the oxygens of this group become less basic and the 4‐hydroxy tautomer gets destabilized on excitation. However, the activation barriers do not reduce significantly on excitation, and this precludes the possibility of ground‐ or excited‐state proton transfer in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001 相似文献
64.
Henry A. Nkabyo D. Hannekom Jean McKenzie 《Journal of Coordination Chemistry》2014,67(23-24):4039-4060
Irradiation cis-[M(Ln-S,O)2] complexes (M = PtII, PdII) derived from N,N-dialkyl-N′-benzoylthioureas (HLn) with various sources of intense visible polychromatic or monochromatic light with λ < 500 nm leads to light-induced cis?→?trans isomerization in organic solvents. In all cases, white light derived from several sources or monochromatic blue-violet laser 405 nm light, efficiently results in substantial amounts of the trans isomer appearing in solution, as shown by 1H NMR and/or reversed-phase HPLC separation in dilute solutions at room temperature. The extent and relative rates of cis/trans isomerization induced by in situ laser light (λ = 405 nm) of cis-[Pd(L2-S,O)2] was directly monitored by 1H NMR and 195Pt NMR spectroscopy of selected cis-[Pt(L-S,O)2] compounds in chloroform-d; both with and without light irradiation allows the δ(195Pt) chemical shifts cis/trans isomer pairs to be recorded. The cis/trans isomers appear to be in a photo-thermal equilibrium between the thermodynamically favored cis isomer and its trans counterpart. In the dark, the trans isomer reverts back to the cis complex in what is probably a thermal process. The light-induced cis/trans process is the key to preparing and isolating the rare trans complexes which cannot be prepared by conventional synthesis as confirmed by the first example of trans-[Pd(L-S,O)2] characterized by single-crystal X-ray diffraction, deliberately prepared after photo-induced isomerization in acetonitrile solution. 相似文献
65.
Direct Access to Aryl Bis(trifluoromethyl)carbinols from Aryl Bromides or Fluorosulfates: Palladium‐Catalyzed Carbonylation 下载免费PDF全文
Katrine Domino Cedrick Veryser Benjamin A. Wahlqvist Cecilie Gaardbo Dr. Karoline T. Neumann Prof.Dr. Kim Daasbjerg Prof. Dr. Wim M. De Borggraeve Prof. Dr. Troels Skrydstrup 《Angewandte Chemie (International ed. in English)》2018,57(23):6858-6862
A palladium‐catalyzed carbonylative approach for the direct conversion of (hetero)aryl bromides into their α,α‐bis(trifluoromethyl)carbinols is described, and it employs only stoichiometric amounts of carbon monoxide and trifluoromethyltrimethylsilane. In addition, aryl fluorosulfates proved highly compatible with these reaction conditions. The method is tolerant of a diverse set of functional groups, and it is adaptable to late‐stage carbon‐isotope labeling. 相似文献
66.
Dr. David Scheerer Prof. Dr. Heng Chi Dr. Dan McElheny Prof. Dr. Timothy A. Keiderling Prof. Dr. Karin Hauser 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(16):3524-3534
Site-specific isotopic labeling of molecules is a widely used approach in IR spectroscopy to resolve local contributions to vibrational modes. The induced frequency shift of the corresponding IR band depends on the substituted masses, as well as on hydrogen bonding and vibrational coupling. The impact of these different factors was analyzed with a designed three-stranded β-sheet peptide and by use of selected 13C isotope substitutions at multiple positions in the peptide backbone. Single-strand labels give rise to isotopically shifted bands at different frequencies, depending on the specific sites; this demonstrates sensitivity to the local environment. Cross-strand double- and triple-labeled peptides exhibited two resolved bands that could be uniquely assigned to specific residues, the equilibrium IR spectra of which indicated only weak local-mode coupling. Temperature-jump IR laser spectroscopy was applied to monitor structural dynamics and revealed an impressive enhancement of the isotope sensitivity to both local positions and coupling between them, relative to that of equilibrium FTIR spectroscopy. Site-specific relaxation rates were altered upon the introduction of additional cross-strand isotopes. Likewise, the rates for the global β-sheet dynamics were affected in a manner dependent on the distinct relaxation behavior of the labeled oscillator. This study reveals that isotope labels provide not only local structural probes, but rather sense the dynamic complexity of the molecular environment. 相似文献
67.
68.
NMR chemical shifts (CSs: δN(NH), δC(α), δC(β), δC', δH(NH), and δH(α)) were computed for the amino acid backbone conformers (α(L), β(L), γ(L), δ(L), ε(L), α(D), γ(D), δ(D), and ε(D) [Perczel et al., J Am Chem Soc 1991, 113, 6256]) modeled by oligoalanine structures. Topological differences of the extended fold were investigated on single β-strands, hairpins with type I and II β-turns, as well as double- and triple-stranded β-sheet models. The so-called "capping effect" was analyzed: residues at the termini of a homoconformer sequence unit usually have different CSs than the central residues of an adequately long homoconformer model. In heteroconformer sequences capping effect ruins the direct applicability of several chemical shift types (δH(NH), δC', and δN(NH)) for backbone structure determination of the parent residue. Experimental δH(α), δC(α), and δC(β) values retrieved from protein database are in good agreement with the relevant computed data in the case of the common backbone conformers (α(L), β(L), γ(L), and ε(L)), even though neighboring residue effects were not accounted for. Experimental and computed ΔδH(α)-ΔδC(α), ΔδH(α)-ΔδC(β), and ΔδC(α)-ΔδC(β) maps give qualitatively the same picture, that is, the positions of the backbone conformers relative to each other are very similar. This indicates that the H(α), C(α), and C(β) chemical shifts of alanine depend considerably on the backbone fold of the parent residue also in proteins. We provide tabulated CSs of the chiral amino acids that may predict the various structures of the residues. 相似文献
69.
We have investigated, using two-component relativistic density functional theory (DFT) at ZORA-SO-BP86 and ZORA-SO-PBE0 level, the occurrence of relativistic effects on the 1H, 13C, and 15N NMR chemical shifts of 1-methylpyridinium halides [MP][X] and 1-butyl-3-methylpyridinium trihalides [BMP][X3] ionic liquids (ILs) (X=Cl, Br, I) as a result of a non-covalent interaction with the heavy anions. Our results indicate a sizeable deshielding effect in ion pairs when the anion is I− and I3−. A smaller, though nonzero, effect is observed also with bromine while chlorine based anions do not produce an appreciable relativistic shift. The chemical shift of the carbon atoms of the aromatic ring shows an inverse halogen dependence that has been rationalized based on the little C-2s orbital contribution to the σ-type interaction between the cation and anion. This is the first detailed account and systematic theoretical investigation of a relativistic heavy atom effect on the NMR chemical shifts of light atoms in the absence of covalent bonds. Our work paves the way and suggests the direction for an experimental investigation of such elusive signatures of ion pairing in ILs. 相似文献
70.
This paper presents the investigation results of the polarized IR spectra of 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde crystals measured at 293 and 77 K. Analysis of the results concerned the linear dichroic, H/D isotopic and temperature effects observed in the spectra of the hydrogen and deuterium bond at the frequency ranges of the νO–H and the νO–D bands, respectively. The main spectral properties of the crystals were interpreted in terms of the “strong-coupling” theory on the basis of the hydrogen bond dimer model. The spectra revealed that the strongest vibrational exciton coupling involved the closely-spaced hydrogen bonds, each belonging to a different chain of associated molecules. The reason for two different crystalline systems, are characterized by almost identical νO–H and νO–D band shapes, is explained. It was proved that a random distribution of the protons and deuterons took place in the lattices of the isotopically diluted crystals. 相似文献