首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17797篇
  免费   4116篇
  国内免费   3050篇
化学   11231篇
晶体学   673篇
力学   1311篇
综合类   172篇
数学   408篇
物理学   11168篇
  2024年   33篇
  2023年   174篇
  2022年   378篇
  2021年   451篇
  2020年   595篇
  2019年   550篇
  2018年   516篇
  2017年   689篇
  2016年   818篇
  2015年   729篇
  2014年   1116篇
  2013年   1538篇
  2012年   1310篇
  2011年   1531篇
  2010年   1202篇
  2009年   1401篇
  2008年   1318篇
  2007年   1333篇
  2006年   1287篇
  2005年   1080篇
  2004年   1024篇
  2003年   851篇
  2002年   786篇
  2001年   615篇
  2000年   563篇
  1999年   464篇
  1998年   379篇
  1997年   346篇
  1996年   282篇
  1995年   256篇
  1994年   201篇
  1993年   192篇
  1992年   188篇
  1991年   127篇
  1990年   105篇
  1989年   90篇
  1988年   87篇
  1987年   62篇
  1986年   43篇
  1985年   35篇
  1984年   30篇
  1983年   23篇
  1982年   29篇
  1981年   15篇
  1980年   20篇
  1979年   26篇
  1978年   17篇
  1977年   12篇
  1976年   21篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
981.
商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。  相似文献   
982.
应用零价铁(ZVI)去除水中(类)金属(含氧)离子是近年来研究的热点。在ZVI除污染过程中,同步提升ZVI除污的反应活性与电子效率对该技术进一步推广应用至关重要。本文综述了近十年(2011-2021年)ZVI的提升技术,主要涉及硫化、外加弱磁场、投加Fe2+、投加氧化剂以及其他新型技术。从不同体系广谱研究以及单一体系具体研究的角度,系统分析了这些技术对ZVI去除含氧水体中(类)金属(含氧)离子的反应活性、去除容量、电子效率的提升表现及作用机制。最后,对ZVI技术未来的研究方向作出了展望,以期促进ZVI技术的进一步完善与发展。本文有望为增强零价铁去除污染物的实际效能提供新的探索方向并完备相关理论基础。  相似文献   
983.
This study is aimed to establish a simple, rapid, and accurate ion chromatography approach for the simultaneous detection of six inorganic anions in urine. Various performance parameters affecting the determination of anions were optimized, including the selection of sample protein precipitation agent, eluent, and flow rate. The final eluent was 3.6 mmol/L sodium carbonate and 12% isopropanol with a flow rate of 0.6 mL/min. Acetonitrile was used for pretreatment to precipitate proteins, and the volume ratio of urine to acetonitrile was 1:4. The correlation coefficient of the target anion calibration curve ranged from 0.9973 to 0.9999. The limit of detection ranged from 1.50 to 12.0 μg/L, and the method detection limit ranged from 15.0 to 120 μg/L. The standard recovery rate for low, medium, and high concentrations ranged from 90 to 110%. The inter-day and intra-day relative standard deviations were <5%. The method has high accuracy and good reproducibility and is suitable for the separation and determination of anions in urine.  相似文献   
984.
An ion chromatography system employing a low-cost three-dimensional printed absorbance detector for indirect ultraviolet detection towards portable phosphate analysis of environmental and industrial waters has been developed. The optical detection cell was fabricated using stereolithography three-dimensional printing of nanocomposite material. Chromatographic analysis and detection of phosphate were carried out using a CS5A 4 × 250 mm analytical column with indirect ultraviolet detection using a 255 nm light-emitting diode. Isocratic elution using a 0.6 mM potassium phthalate eluent combined with 1.44 mM sodium bicarbonate was employed at a flow rate of 0.75 mL/min. A linear calibration range of 0.5 to 30 mg/L PO43− applicable to environmental and wastewater analysis was achieved. For retention time and peak area repeatability, relative standard deviation values were 0.68 and 4.09%, respectively. Environmental and wastewater samples were analyzed with the optimized ion chromatography platform and the results were compared to values obtained by an accredited ion chromatograph. For the analysis of environmental samples, relative errors of <14 % were achieved. Recovery analysis was also carried out on both freshwater and wastewater samples and recovery results were within the acceptable range for water analysis using standard ion chromatography methods.  相似文献   
985.
Novel processes have recently been developed that provide for the enhancement of ozonation through combination with electrochemical treatments. These are processes that can be included among those defined as advanced oxidation processes as they proceed via electrogeneration of highly oxidizing radical species.These processes are generally carried out by sparging ozone in both divided and undivided electrochemical cells in order to promote its decomposition through different mechanisms, depending on the electrode materials adopted, and in some cases still debated.This mini review presents the most recent advances in the field of electrochemically assisted ozonation.In particular, the first section is focused on the process known as electroperoxone (EP) where the ozone decomposition is enhanced by the adoption of carbon-based cathodes, due to the electrogeneration of hydrogen peroxide, while the second section is focused on the process that implies ozonation in a cell adopting metal-based cathodes.  相似文献   
986.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   
987.
Batteries, as highly concerned energy conversion system, have a great development prospect in various fields, especially in the field of energy powered vehicles. Multivalent ion batteries are getting more attention due to their low cost, high abundance in earth crust, high capacity and safety compared with Lithium batteries. Despite above advantages, several problems still need to be solved before multivalent ion batteries achieve large-scale application, such as interfacial parasitic reaction, anode passivation, and dendrites. The replacement of liquid electrolytes with gel polymer electrolytes (GPEs) which pose high safety, high mechanical strength and simplified battery system, is an effective strategy to inhibit dendrite growth and improve electrochemical performance. This review mainly discusses the advantages and challenges of multivalent ion batteries including zinc, magnesium, calcium and aluminum batteries. Meanwhile, the major targets of this review are introducing the recent developments and making a summary of the future trends of GPEs in the multivalent ion batteries.  相似文献   
988.
This study established a ferric ion (Fe3+) detection method as a result of the fluorescence quenching effect of Fe3+ on carbon dots (CDs). Specifically, we proposed, a green microwave synthesis route towards fluorescent CDs that requires only the brewer’s spent grain as starting materials. Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectra and X-ray photoelectron spectroscopy were performed to investigate the CDs characteristic: morphology, size distribution, functional groups, and composition, respectively. The experimental results, which were run under optimal experimental conditions, indicated that the fluorescence intensity and concentration of Fe3+ were within the desired linear range (0.3–7 μM). The detection limit of this assay towards Fe3+ was 95 nM. The proposed method showed significant selectivity with respect to interfering ions. We evaluated the potential application of this method with tap water, lake water and fetal bovine serum as real samples. Additionally, the CDs could be served as superior bioimaging probes in Hela cells as a result of their excellent optical stability and good biocompatibility. In a word, the present study provides a new idea for CDs derived from the waste of agricultural products for detecting food or environmental contaminants and cell imaging.  相似文献   
989.
A novel HIF (hypoxia-inducible factor)-1α inhibitor, the (aryloxyacetylamino)benzoic acid derivative LW6, is an anticancer agent that inhibits the accumulation of HIF-1α. The aim of this study was to characterize and determine the structures of the metabolites of LW6 in ICR mice. Metabolite identification was performed using a predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion (pMRM-IDA-EPI) method in negative ion mode on a hybrid triple quadrupole-linear ion trap mass spectrometer (QTRAP). A total of 12 metabolites were characterized based on their MS/MS spectra, and the retention times were compared with those of the parent compound. The metabolites were divided into five structural classes based on biotransformation reactions: amide hydrolysis, ester hydrolysis, mono-oxidation, glucuronidation, and a combination of these reactions. From this study, 2-(4-((3r,5r,7r)-adamantan-1-yl)phenoxy)acetic acid (APA, M7), the metabolite produced via amide hydrolysis, was found to be a major circulating metabolite of LW6 in mice. The results of this study can be used to improve the pharmacokinetic profile by lowering the clearance and increasing the exposure relative to LW6.  相似文献   
990.
Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a “Li-stuffed” spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte–cathode composites. Materials of composition Li1.25M(III)0.25TiO4, M(III) = Cr or Al were prepared through solid-state methods. The room-temperature bulk Li+-ion conductivity is 1.63 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4. Addition of Li3BO3 (LBO) increases ionic and electronic conductivity reaching a bulk Li+ ion conductivity averaging 6.8 × 10−4 S cm−1, a total Li-ion conductivity averaging 4.2 × 10−4 S cm−1, and electronic conductivity averaging 3.8 × 10−4 S cm−1 for the composition Li1.25Cr0.25Ti1.5O4 with 1 wt. % LBO. An electrochemically active solid solution of Li1.25Cr0.25Mn1.5O4 and LiNi0.5Mn1.5O4 was prepared. This work proves that Li-stuffed spinels can achieve fast Li-ion conduction and that the concept is potentially useful to enable a single-phase fully solid electrode without interphase impedance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号