全文获取类型
收费全文 | 151篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
化学 | 68篇 |
晶体学 | 5篇 |
力学 | 5篇 |
物理学 | 93篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 8篇 |
2019年 | 5篇 |
2017年 | 3篇 |
2016年 | 10篇 |
2015年 | 9篇 |
2014年 | 8篇 |
2013年 | 31篇 |
2012年 | 8篇 |
2011年 | 15篇 |
2010年 | 11篇 |
2009年 | 7篇 |
2008年 | 5篇 |
2007年 | 3篇 |
2006年 | 8篇 |
2005年 | 9篇 |
2004年 | 6篇 |
2003年 | 2篇 |
2002年 | 7篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1992年 | 1篇 |
1985年 | 2篇 |
排序方式: 共有171条查询结果,搜索用时 78 毫秒
151.
田兆芸 《原子与分子物理学报》2016,33(6)
运用基于第一性原理的平面波赝势法研究了L12-Al3Li金属间化合物中Li原子空位和Al原子反位缺陷对Al3Li热力学性能的影响,结果表明:Al反位缺陷易与周围原子形成局域共价键,使晶体体积增大,而Li空位缺陷却减小了晶体体积。Li空位缺陷使L12-Al3Li的硬度增加,延展性降低,德拜温度值升高。Al反位缺陷降低了晶体的硬度,增加了延展性,降低了德拜温度值。在德拜温度以下,Li空位缺陷减小了L12-Al3Li的热容, 而Al反位缺陷使晶体热容增大。晶格畸变对L12-Al3Li晶体的热力学性能有重要影响 相似文献
152.
Tae-Soo You 《Journal of solid state chemistry》2010,183(6):1258-214
Reported are the synthesis and the structural characterization of four new polar intermetallic phases, which exist only with mixed alkaline-earth and rare-earth metal cations in narrow homogeneity ranges. (Sr1-xCax)5In3Ge6 and (Eu1-xYbx)5In3Ge6 (x≈0.7) crystallize in the orthorhombic space group Pnma with two formula units per unit cell (own structure type, Pearson symbol oP56). The lattice parameters are as follows: a=13.109(3)-13.266(3) Å, b=4.4089(9)-4.4703(12) Å, and c=23.316(5)-23.557(6) Å. (Sr1-xCax)3In2Ge4 and (Sr1-xYbx)3In2Ge4 (x≈0.4-0.5) adopt another novel monoclinic structure-type (space group C2/m, Z=4, Pearson symbol mS36) with lattice parameters in the range a=19.978(2)-20.202(2) Å, b=4.5287(5)-4.5664(5) Å, c=10.3295(12)-10.3447(10) Å, and β=98.214(2)-98.470(2)°, depending on the metal cations and their ratio. The polyanionic sub-structures in both cases are based on chains of InGe4 corner-shared tetrahedra. The A5In3Ge6 structure (A=Sr/Ca or Sr/Yb) also features Ge4 tetramers, and isolated In atoms in nearly square-planar environment, while the A3In2Ge4 structure (A=Sr/Ca or Eu/Yb) contains zig-zag chains of In and Ge strings with intricate topology of cis- and trans-bonds. The experimental results have been complemented by tight-binding linear muffin-tin orbital (LMTO) band structure calculations. 相似文献
153.
The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce–Sn in CeMgSn, Ce–Pb in CeMgPb, and Ce–Pd in CePdSn. 相似文献
154.
We have studied the microscopic properties of the hexagonal ZrNiAl, a model compound for a wide family of intermetallic compounds crystallizing in this type of structure, by using 27Al NMR spectroscopy. We have investigated the lineshape of static and MAS NMR spectra as a function of magnetic field strength (4.7–9.4 T) and temperature (5–300 K). Our data indicate that the 27Al NMR spectra result from a combined effect of quadrupole and anisotropic shift interactions. The 27Al nuclei are in an environment characterized by the quadrupole coupling constant e2qQ/h of 3.3 MHz, asymmetry parameter ηQ of 0.42, isotropic shift δiso of 393 ppm, shift anisotropy δanis = δzz − (δxx + δyy)/2 of 150 ppm, and asymmetry factor ηS of 0.5. They are found to be temperature independent. The spin–lattice relaxation rate measured at 7.05 T is proportional to the temperature with T1T = 135 s K. The mechanisms responsible for observed values of δiso, δanis, T1T, and the enhanced Korringa constant are discussed. 相似文献
155.
The electronic structure and magnetic properties of the Heusler compound Co2ScP have been investigated by the generalized gradient approximation based on density functional theory. The results show that the ground state phase of the Co2ScP compound possesses AlCu2Mn-type crystal structure and exhibits half-metallic ferrimagnetism. The total spin moment is 2 μB at the equilibrium lattice constant a0=5.83 Å, which agrees with the Slater–Pauling rule. The spin-up electrons are metallic, but the spin-down bands are semiconductor with a gap of 0.55 eV, and the spin-flip gap is of 0.07 eV. 相似文献
156.
We report on the formation of a novel ternary compound Ce2PdIn8 that is isostructural with the heavy-fermion superconductors Ce2CoIn8 and Ce2RhIn8. Its magnetic, electrical transport and thermodynamic properties were studied on polycrystalline samples in wide ranges of temperature and magnetic field strength. The results revealed Ce2PdIn8 to be a paramagnetic Kondo lattice with a coherence temperature of about 12 K. The C/T ratio of the specific heat reaches at 350 mK a strongly enhanced magnitude of about per Ce-atom, thus clearly indicating a heavy-fermion nature of this material. Moreover, a logarithmic divergence of C/T vs. T, observed below 3 K, which is accompanied by a linear temperature dependence of the electrical resistivity below 6 K, hint at a non-Fermi liquid character of the electronic ground state in the new compound reported. 相似文献
157.
A.V. Andreev 《Physica B: Condensed Matter》2009,404(19):2978-2980
A comparative study of magnetization in UFe6Al6 and LuFe6Al6 single crystals gives clear evidence for the magnetic state of uranium in UFe6Al6. Both compounds exhibit the easy-plane type of magnetic anisotropy, however, the anisotropy energy in UFe6Al6, characterized by the anisotropy constants K1=−7.3 MJ m−3 and K2=−1.25 MJ m−3 at 2 K, exceeds by an order of magnitude that in LuFe6Al6. Anisotropy within the easy plane in the ferromagnetic state and anisotropy in the paramagnetic range, both absent in LuFe6Al6, are observed in UFe6Al6. 相似文献
158.
LU Yu-Ming LIANG Ying YANG Xin-Xin CHEN Hao-Hong ZHAO Jing-Tai 《结构化学》2005,24(7):769-773
1 INTRODUCTION In recent decades, the ternary systems of rare earth (R)-transition metal (T)-pnictogen (M) show rich chemistry and have attracted wide interest[1] because of their unusual physical properties, such as heavy Fermion, thermoelectric transformation, etc[2]. Although some antimonide phases have been re- ported[3, 4], bismuthide systems have been less inves- tigated up to now. In comparison with antimony systems, rich compounds in bismuth systems are also expected to be disco… 相似文献
159.
160.
First-principle simulations have been applied to investigate the effect of copper(Cu) or aluminum(Al) content on the ductility of Al_3Ti,AlTi,AlCu,and AlTiCu_2 alloys.The mechanical stable and elastic properties of Al-based intermetallic compounds are researched by density functional theory with the generalized gradient approximation(DFT-GGA).The calculated lattice constants are in conformity with the previous experimental and theoretical data.The deduced elastic constants show that the investigated Al_3Ti,AlTi,AlCu,and AlTiCu_2 structures are mechanically stable.Shear modulus,Young's modulus,Poisson's ratio,and the ratio B/G have also been figured out by using reckoned elastic constants.A further analysis of Young's modulus and Poisson's ratio reveals that the third added element copper content has significant effects on the Al-Ti-based ICs ductile character. 相似文献