首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3321篇
  免费   619篇
  国内免费   359篇
化学   1499篇
晶体学   71篇
力学   863篇
综合类   38篇
数学   282篇
物理学   1546篇
  2024年   5篇
  2023年   48篇
  2022年   99篇
  2021年   111篇
  2020年   160篇
  2019年   128篇
  2018年   106篇
  2017年   129篇
  2016年   178篇
  2015年   129篇
  2014年   153篇
  2013年   300篇
  2012年   174篇
  2011年   181篇
  2010年   143篇
  2009年   190篇
  2008年   194篇
  2007年   190篇
  2006年   179篇
  2005年   153篇
  2004年   173篇
  2003年   143篇
  2002年   120篇
  2001年   126篇
  2000年   110篇
  1999年   105篇
  1998年   87篇
  1997年   64篇
  1996年   65篇
  1995年   67篇
  1994年   42篇
  1993年   32篇
  1992年   31篇
  1991年   30篇
  1990年   35篇
  1989年   23篇
  1988年   22篇
  1987年   9篇
  1986年   12篇
  1985年   9篇
  1984年   8篇
  1983年   4篇
  1982年   13篇
  1981年   2篇
  1980年   5篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1971年   4篇
  1957年   4篇
排序方式: 共有4299条查询结果,搜索用时 46 毫秒
101.
The salt effects on molecular orientation at air/liquid methanol interface were investigated by the polarization-dependent sum frequency generation vibrational spectroscopy(SFG-VS). We clarified that the average tilting angle of the methyl group to be u = 308 58 at the air/pure methanol surface assuming a d-function orientational distribution. Upon the addition of 3 mol/L Na I, the methyl group tilts further away from the surface normal with a new u = 418 38. This orientational change does not explain the enhancement of the SFG-VS intensities when adding Na I, implying the number density of the methanol molecules with a net polar ordering in the surface region also changed with the Na I concentrations. These spectroscopic findings shed new light on the salt effects on the surfaces structures of the polar organic solutions. It was also shown that the accurate determination of the bulk refractive indices and Raman depolarization ratios for different salt concentrations is crucial to quantitatively interpret the SFG-VS data.  相似文献   
102.
103.
104.
Impinging jets over liquid surfaces are a common practice in the metallurgy and chemical industries. This paper presents a numerical study of the fluid dynamics involved in this kind of processes. URANS simulations are performed using the volume of fluid (VOF) method to deal with the multiphase physics. This unsteady approach with the appropriate computational domain allows resolution of the big eddies responsible for the low frequency phenomena. The solver we used is based on the finite volume method and turbulence is modelled with the realisable k-? model. Two different configurations belonging to the dimpling and splashing modes are under consideration. The results are compared with PIV and LeDaR experimental data previously obtained by the authors. Attention is focused on the surroundings of the impingement, where the interaction between jet and liquid film is much stronger. Finally, frequency analysis is carried out to study the flapping motion of the jet and cavity oscillations.  相似文献   
105.
This study describes the synthesis of PdCu, PdCu/reduced graphene oxide and PtPdCu nanoparticle thin films via a simple reduction of organometallic precursors including [PtCl2(cod)] and [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene) complexes, in the presence of [Cu(acac)2] (acac = acetylacetonate) complex at toluene–water interface. The structure and morphology of the thin films were characterized using energy‐dispersive analysis of X‐rays, X‐ray diffraction and transmission electron microscopy techniques. Our studies show that all of these nanoparticles are suitable for the Suzuki–Miyaura coupling (SMC) reaction in water. PtPdCu and PdCu thin films showed higher catalytic activity compared to Pd thin film in the SMC reaction due to the appropriate interaction among palladium, platinum and copper metals.  相似文献   
106.
A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the “usual” manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg–Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg–Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics studies of cubic crystals. In order to consider a fully specified system, a typical sixth order polynomial phase field model is considered. Analytical solutions for the propagating interface and critical nucleus are found, accounting for the influence of the anisotropic gradient energy and elucidating the distribution of components of interface stresses. The orientation-dependence of the nonequilibrium interface energy is first suitably defined and explicitly determined analytically, and the associated width is also found. The developed formalism is applicable to melting/solidification and crystal-amorphous transformation and can be generalized for martensitic and diffusive phase transformations, twinning, fracture, and grain growth, for which interface energy depends on interface orientation of crystals from either side.  相似文献   
107.
To decrease the water pollution of textile industries with a large amount of toxic and non‐biodegradable colored dye effluents, an efficient technique is required to safely remove harmful pollutants. In this paper, the reaction between azo dyes and NaBH4 catalyzed by nanoparticles (NPs) thin films has been studied. We report insitu degradation of methyl orange (MO) and methyl red (MR) by using Pt‐based thin films monitored by UV–Vis spectroscopy. We have synthesized different thin films such as Pt, PtPd, PtFeFe2O3, PtNi and PtAu films from Pt organometallic precursor in the MO and MR medium (dye degradation and NPs formation is happened simultaneously) and activity of these films were compared in the complete degradation of MO and MR dyes. Rate constants for the catalyzed reactions have been determined. PtPd NPs thin film has shown the highest rate constant for the degradation of MO and MR within only a few seconds due to its well‐ordered structure. Furthermore, the effect of presence of MO on the morphology of NPs was investigated.  相似文献   
108.
A simple and effective strategy is described for the synthesis of Pd–CdS nanopowder by the reduction of an organopalladium(II) complex, [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), in the presence of CdS quantum dots (QDs) at a toluene–water interface. We investigated the impact of addition of CdS QDs on catalytic activity of Pd nanoparticles (NPs). The Pd–CdS nanopowder functions as an efficient catalyst for Suzuki–Miyaura reactions for the formation of carbon–carbon bonds. There is a high electron density on Pd NPs and due to their high electron affinity they behave as an electron scavenger from CdS increasing the rate of oxidative addition, which is the rate‐determining step of the catalytic cycle, and, just as we expect, the C─C coupling reaction with the Pd–CdS nanopowder is faster and occurs in less time than that with Pd nanocatalysts. Compared to classical reactions, this method consistently has the advantages of short reaction times, high yields in a green solvent, reusability of the catalyst without considerable loss of catalytic activity and low cost, and is a facile method for the preparation of the catalyst.  相似文献   
109.
This paper is dedicated to the numerical simulation of nuclear components (cores and steam generators) by fictitious domain methods. The fictitious domain approach consists in immersing the physical domain under study in a Cartesian domain, called the fictitious domain, and in performing the numerical resolution on this fictitious domain. The calculation times are then efficiently reduced by the use of fast solvers. In counterpart, one has to handle with an immersed boundary, generally non‐aligned with the Cartesian mesh, which can be non‐trivial. The two fictitious domain methods compared here on industrial simulations and developed by Ramière et al. deal with an approximate immersed interface directly derived from the uniform Cartesian mesh. All the usual immersed boundary conditions (Dirichlet, Robin, Neumann), possibly mixed, are handled through a unique formulation of the fictitious problem. This kind of approximation leads to first‐order methods in space that exhibit a good ratio of the precision of the approximate solution over the CPU time, which is very important for industrial simulations. After a brief recall of the fictitious domain method with spread interface (Ramière et al., CMAME 2007) and the fictitious domain method with immersed jumps (Ramière et al., JCP 2008), we will focus on the numerical results provided by these methods applied to the energy balance equation in a steam generator. The advantages and drawbacks of each method will be pointed out. Generally speaking, the two methods confirm their very good efficiency in terms of precision, convergence, and calculation time in an industrial context. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号