首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   56篇
  国内免费   21篇
化学   99篇
力学   53篇
综合类   3篇
数学   219篇
物理学   659篇
  2024年   5篇
  2023年   20篇
  2022年   27篇
  2021年   29篇
  2020年   22篇
  2019年   21篇
  2018年   26篇
  2017年   46篇
  2016年   37篇
  2015年   28篇
  2014年   65篇
  2013年   85篇
  2012年   39篇
  2011年   75篇
  2010年   70篇
  2009年   58篇
  2008年   70篇
  2007年   59篇
  2006年   41篇
  2005年   37篇
  2004年   22篇
  2003年   24篇
  2002年   16篇
  2001年   23篇
  2000年   10篇
  1999年   10篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1967年   1篇
排序方式: 共有1033条查询结果,搜索用时 15 毫秒
101.
Submanifolds with parallel mean curvature vector play important roles in differential geometry, theory of harmonic maps as well as in physics. Spatial surfaces in 4D Lorentzian space forms with parallel mean curvature vector were classified by B. Y. Chen and J. Van der Veken in [9]. Recently, spatial surfaces with parallel mean curvature vector in arbitrary pseudo-Euclidean spaces are also classified in [7]. In this article, we classify spatial surfaces with parallel mean curvature vector in pseudo-Riemannian spheres and pseudo-hyperbolic spaces with arbitrary codimension and arbitrary index. Consequently, we achieve the complete classification of spatial surfaces with parallel mean curvature vector in all pseudo-Riemannian space forms. As an immediate by-product, we obtain the complete classifications of spatial surfaces with parallel mean curvature vector in arbitrary Lorentzian space forms.   相似文献   
102.
Gaussian fields (GFs) are frequently used in spatial statistics for their versatility. The associated computational cost can be a bottleneck, especially in realistic applications. It has been shown that computational efficiency can be gained by doing the computations using Gaussian Markov random fields (GMRFs) as the GFs can be seen as weak solutions to corresponding stochastic partial differential equations (SPDEs) using piecewise linear finite elements. We introduce a new class of representations of GFs with bivariate splines instead of finite elements. This allows an easier implementation of piecewise polynomial representations of various degrees. It leads to GMRFs that can be inferred efficiently and can be easily extended to nonstationary fields. The solutions approximated with higher order bivariate splines converge faster, hence the computational cost can be alleviated. Numerical simulations using both real and simulated data also demonstrate that our framework increases the flexibility and efficiency. Supplementary materials are available online.  相似文献   
103.
Gierer–Meinhardt system as a molecularly plausible model has been proposed to formalize the observation for pattern formation. In this paper, the Gierer–Meinhardt model without the saturating term is considered. By the linear stability analysis, we not only give out the conditions ensuring the stability and Turing instability of the positive equilibrium but also find the parameter values where possible Turing–Hopf and spatial resonance bifurcation can occur. Then we develop the general algorithm for the calculations of normal form associated with codimension-2 spatial resonance bifurcation to better understand the dynamics neighboring of the bifurcating point. The spatial resonance bifurcation reveals the interaction of two steady state solutions with different modes. Numerical simulations are employed to illustrate the theoretical results for both the Turing–Hopf bifurcation and spatial resonance bifurcation. Some expected solutions including stable spatially inhomogeneous periodic solutions and coexisting stable spatially steady state solutions evolve from Turing–Hopf bifurcation and spatial resonance bifurcation respectively.  相似文献   
104.
This paper deals with a model of time-dependent double diffusive convection in Darcy flow. In particular it is concerned with the spatial decay of solutions when the flow is confined to a semi-infinite cylinder. Decay bounds for an energy expression are derived.  相似文献   
105.
Spatial distribution of soil forces on the surface of plough is an important aspect that can help engineers for improving efficiency of tillage implement. It was analyzed at eleven different points of the moldboard plough with the help of sensors accompanied with the virtual instrument developed in LabView software with the aid of other supporting instruments. It was observed that soil forces increased with an increase in speed and depth. Depth changed soil forces more at upper parts than lower parts whereas speed affected rear parts more than the front part of the plough. Draft forces followed almost similar trend and least value of 308.17 N experimental draft force was found at 1 m/s speed and 5 cm depth under 33% moisture content. Cumulative soil forces found too smaller than the draft as they represented the force spatial distribution of specific parts of plough. It was observed that sensor technology provided real time picture of force variation during tillage process that could save time and effort.  相似文献   
106.
We consider the incidental parameters problem in this paper, i.e. the estimation for a small number of parameters of interest in the presence of a large number of nuisance parameters. By assuming that the observations are taken from a multiple strictly stationary process, the two estimation methods, namely the maximum composite quasi-likelihood estimation (MCQLE) and the maximum plug-in quasi-likelihood estimation (MPQLE) are considered. For the MCQLE, we profile out nuisance parameters based on lower-dimensional marginal likelihoods, while the MPQLE is based on some initial estimators for nuisance parameters. The asymptotic normality for both the MCQLE and the MPQLE is established under the assumption that the number of nuisance parameters and the number of observations go to infinity together, and both the estimators for the parameters of interest enjoy the standard root-nn convergence rate. Simulation with a spatial–temporal model illustrates the finite sample properties of the two estimation methods.  相似文献   
107.
The location set covering problem continues to be an important and challenging spatial optimization problem. The range of practical planning applications underscores its importance, spanning fire station siting, warning siren positioning, security monitoring and nature reserve design, to name but a few. It is challenging on a number of fronts. First, it can be difficult to solve for medium to large size problem instances, which are often encountered in combination with geographic information systems (GIS) based analysis. Second, the need to cover a region efficiently often brings about complications associated with the abstraction of geographic space. Representation as points can lead to significant gaps in actual coverage, whereas representation as polygons can result in a substantial overestimate of facilities needed. Computational complexity along with spatial abstraction sensitivity combine to make advances in solving this problem much needed. To this end, a solution framework for ensuring complete coverage of a region with a minimum number of facilities is proposed that eliminates potential error. Applications to emergency warning siren and fire station siting are presented to demonstrate the effectiveness of the developed approach. The approach can be applied to convex, non-convex and non-contiguous regions and is unaffected by arbitrary initial spatial representations of space.  相似文献   
108.
When modeling spatially distributed normal responses Yi in terms of vectors xi of explanatory variables, one may fit a linear model assuming independence, and then use the empirical variogram of the residuals to determine an appropriate parametric form for the autocorrelation function. Suppose, however, that the responses are not normally distributed—for example, Poisson or Bernoulli. One may model spatial dependence using a hierarchical generalized linear model in which, conditional on a latent Gaussian field Z = {Zi}, the Yi have independent distributions from the exponential family, with an appropriate link function connecting their conditional means with the linear predictors xtiβ + Zi. The question then is how to determine an appropriate model for the autocorrelation function of Z. The empirical variogram of the Yi is no longer appropriate, since (unless the link function is the identity) it is on the wrong scale. We propose here an alternative, the latent scale covariogram, whose graph reflects the autocorrelation structure of the underlying normal field. We illustrate its use on several real datasets, together with a simulated dataset, and obtain results quite different from those obtained using the variogram. Supplementary materials for this article are available online.  相似文献   
109.
We consider spatially extended systems of interacting nonlinear Hawkes processes modeling large systems of neurons placed in Rd and study the associated mean field limits. As the total number of neurons tends to infinity, we prove that the evolution of a typical neuron, attached to a given spatial position, can be described by a nonlinear limit differential equation driven by a Poisson random measure. The limit process is described by a neural field equation. As a consequence, we provide a rigorous derivation of the neural field equation based on a thorough mean field analysis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号