首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2768篇
  免费   262篇
  国内免费   279篇
化学   1703篇
晶体学   17篇
力学   285篇
综合类   18篇
数学   106篇
物理学   1180篇
  2024年   4篇
  2023年   32篇
  2022年   57篇
  2021年   57篇
  2020年   59篇
  2019年   78篇
  2018年   69篇
  2017年   93篇
  2016年   103篇
  2015年   83篇
  2014年   121篇
  2013年   245篇
  2012年   113篇
  2011年   176篇
  2010年   136篇
  2009年   165篇
  2008年   161篇
  2007年   164篇
  2006年   169篇
  2005年   165篇
  2004年   124篇
  2003年   104篇
  2002年   97篇
  2001年   87篇
  2000年   85篇
  1999年   83篇
  1998年   59篇
  1997年   80篇
  1996年   57篇
  1995年   54篇
  1994年   41篇
  1993年   34篇
  1992年   16篇
  1991年   24篇
  1990年   13篇
  1989年   10篇
  1988年   8篇
  1987年   13篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   11篇
  1981年   10篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有3309条查询结果,搜索用时 15 毫秒
121.
In this study, batch experiments were conducted to investigate the performance of microscale Fe/Cu bimetallic particles-air-persulfate system (mFe/Cu-air-PS) for p-nitrophenol (PNP) treatment in aqueous solution. The results indicate that toxic and refractory PNP in aqueous solution could be decomposed effectively and transformed into lower toxicity intermediates.  相似文献   
122.
A novel, green and effective approach to fabricate uniform functional spherical polymer particles remains a huge challenge. Herein, we present a novel one-pot approach superior to traditional precipitation polymerization, called precipitated droplets in-situ cross-linking (PDIC) polymerization, by which uniform particles are fabricated on large scale without any toxic organic solvents or stabilizers. With this approach, functional spherical polymer particles can be fabricated continuously only relying on gravity, and the preparation process is thus super-fast. For example, polyacrylic acid (PAA) hydrogel particles with ultra-high adsorption capacity are fabricated within only 60 s. Moreover, we have successfully fabricated different functional hydrogel particles, including anticoagulant, reinforced and bactericidal particles, based on the monomers of 2-acrylamide-2-methylpropanesulfonic acid (AMPS), acrylamide (AM) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (DMC), respectively. This approach has several advantages: (i) the technology is green; (ii) the size and porosity of the particles can be well-controlled; (iii) various functional spherical hydrogel particles can be fabricated by using corresponding monomers. More importantly, this approach fits the commercialization of functional hydrogel particles on demand.  相似文献   
123.
The state of super-dense matter is essential for us to understand the nature of pulsars; however, non- perturbative quantum chromodynamics makes it very difficult to make direct calculations of the state of cold matter at realistic baryon number densities inside compact stars. Nevertheless, from an observational point of view, it is conjectured that pulsars could be made up of quark clusters since the strong coupling between quarks might render the quarks to be grouped in clusters. In this paper, we attempt to find an equation of state of condensed quark-cluster matter in a phenomenological way. Supposing that the quark-clusters could be analogized to inert gases, we apply here the corresponding-state approach to derive the equation of state of quark-cluster matter, as was similarly demonstrated for nuclear and neutron-star matter in the 1970s. According to the calculations that we have presented, the quark-cluster stars, which are composed of quark-cluster matter, could have a high maximum mass that is consistent with observations and, in turn, further observations of pulsar mass could also place a constraint on the properties of quark-cluster matter. We will also briefly discuss the melting heat during the solid-liquid phase conversion and its related astrophysical consequences.  相似文献   
124.
125.
This paper presents a new algorithm for the prediction of indoor suspension particle dispersion based on a v2-f model. In order to handle the near-wall turbulence anisotropy properly, which is significant in the dispersion of fine particles, the particle eddy diffusivity is calculated using different formulae among regions of the turbulent core and in the vicinity of walls. The new algorithm is validated by several cases performed in two ventilated rooms with various air distribution patterns. The simulation results reveal that v2-f nonlinear turbulence model combined with a particle convective equation gives satisfactory agreement with the experimental data. It is generally found that the dynamic equation combined with the v2-f model can properly handle low Reynolds number (LRN) flows which are usually encountered in indoor air flows and fine particle dispersion.  相似文献   
126.
127.
128.
An emulsion interface materialization method was used to obtain amphiphilic silica Janus nanoparticles. Reducing the photosynthesis of aquatic organisms after water pollution. PW12O403− was introduced onto Janus particles by ion exchange, and an amphiphilic particle emulsion catalyst (PWO-J) was prepared. Hydrogen peroxide was used as the oxygen source, and the amphiphilicty of the catalyst was used to assemble the catalyst at the Pickering emulsion interface. The PWO-J catalyst was found to exhibit very high catalytic activity toward the oxidation of oleic acid in water-in-oil systems. The results showed that PWO-J catalysis of oxidation had similar results as CTAB and phosphotungstic acid (control system) under the same conditions. The azelaic acid recovery rate was 86.7%, and PWO-J could be reused 4 times. A reaction mechanism was proposed, and the constructed model was used to calculate a reaction rate constant of 15.32 × 10−5L•mol−1•s−1 for the PWO-J system. The PWO-J system had a lower activation energy than the control system, showing that the catalytic oxidation of oleic acid into azelaic acid was more likely to occur in the PWO-J system.  相似文献   
129.
In this study, all available data on the largest solar proton events (SPEs), or extreme solar energetic particle (SEP) events, for the period from 1561 up to now are analyzed. Under consideration are the observational, methodological and physical problems of energy-spectrum presentation for SEP fluxes (fluences) near the Earth's orbit. Special attention is paid to the study of the distribution function for extreme fluences of SEPs by their sizes. The authors present advances in at least three aspects: 1) a form of the distribution function that was previously obtained from the data for three cycles of solar activity has been completely confirmed by the data for 41 solar cycles; 2) early estimates of extremely large fluences in the past have been critically revised, and their values were found to be overestimated; and 3) extremely large SEP fluxes are shown to obey a probabilistic distribution, so the concept of an “upper limit flux” does not carry any strict physical sense although it serves as an important empirical restriction. SEP fluxes may only be characterized by the relative probabilities of their appearance, and there is a sharp break in the spectrum in the range of large fluences (or low probabilities). It is emphasized that modern observational data and methods of investigation do not allow, for the present, the precise resolution of the problem of the spectrum break or the estimation of the maximum potentialities of solar accelerator(s). This limitation considerably restricts the extrapolation of the obtained results to the past and future for application to the epochs with different levels of solar activity.  相似文献   
130.
The evolution of particle size distribution (PSD) of fine polydisperse particles at high number concentrations (>105 cm−3) was simulated through a combined model employing direct quadrature method of moments (DQMOM) with heat and mass transfer equations. The PSD was assumed to retain log-normal distribution during the heterogeneous condensation process. The model was first verified by exact solution and experimental data prior to investigating the influence of initial conditions on final PSD under an octadecane–nitrogen atmosphere. Low particle number concentrations and high vapor concentrations were beneficial to shift the PSD to larger particles having a narrower distribution. Additionally, vapor depletion has more influence on the final PSD than the heat release parameter for a number concentration of 106 cm−3. This study may assist the design process of a gas–solid separating cyclone, to eliminate dust from high-temperature volatiles by pyrolysis of solid fuels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号