首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   77篇
  国内免费   11篇
化学   87篇
晶体学   8篇
力学   1篇
数学   2篇
物理学   205篇
  2024年   1篇
  2023年   6篇
  2022年   12篇
  2021年   16篇
  2020年   35篇
  2019年   15篇
  2018年   5篇
  2017年   12篇
  2016年   16篇
  2015年   10篇
  2014年   8篇
  2013年   15篇
  2012年   21篇
  2011年   16篇
  2010年   6篇
  2009年   13篇
  2008年   9篇
  2007年   7篇
  2006年   21篇
  2005年   10篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
91.
刘益春  陈艳伟  申德振 《物理》2005,34(9):654-659
一维纳米结构因其优异的光、电特性,在纳米电子学,光电子学器件等方面有重要的应用价值而倍受关注.在一维半导体纳米材料中,ZnO因激子束缚能大(60meV),可在室温获得高效的紫外发光而成为近年来继GaN材料后的又一研究热点.外延生长一维纳米结构ZnO及其量子阱材料除因量子尺寸效应更适宜做室温紫外发光、激光材料与器件外,还因界面和量子限制效应而具有许多新奇的光、电、和力学特性,可应用于纳米光电子学器件,传感器及存储器件,纳米尺度共振隧道结型器件和场效应晶体管的研制和开发.文章着重介绍了目前ZnO一维纳米结构制备,一维ZnO纳米异质结构和一维ZnO/Zn1-xMgxO多量子阱结构的外延生长和研究进展.  相似文献   
92.
Epitaxial La1−x Pb x MnO3 (LPMO) thin films, grown on (100) SrTiO3 substrates by laser ablation technique at different temperatures between 600 and 850°C, have been characterized for electrical and magnetic properties. The temperature dependence of resistivity showed that the metal-insulator transition temperature (T MI) decreases with increasing substrate temperature, which has been attributed to decrease in Pb content in the filsm. The YBa2Cu3O x /La1−x MnO3 heterostructures, exhibiting both superconductivity and ferromagnetism, have been fabricated.  相似文献   
93.
Most recently, much attention has been devoted to photocatalytic materials that may help to solve the global energy crisis and may provide environmental protection. Herein, novel cocatalysts based on few layered MoS2 and TiO2 nanomaterials have been designed by growing MoS2 nanosheets on the surface of TiO2 nanospheres through a facile hydrothermal method. The method allows the formation of TiO2/MoS2 core–shell heterostructures of uniform morphologies and stable structure and provides a good control over shell thickness. The mechanism that forms these heterostructures is discussed in detail. In addition, as cocatalyst, MoS2 nanosheets can enlarge the light harvesting window to include visible light and improve the photocatalytic ability of TiO2. Using Rhodamine B as the model, the resultant heterostructure is demonstrated to possess excellent and stable photocatalytic activity in the degradation of organic pollutants under visible light illumination. The TiO2/MoS2 heterostructures possess this catalytic activity due to their large surface area and their excellent interface for separating holes and electrons. Therefore, this novel heterostructure nanomaterials possess potential applications in water treatment, degradation of dye pollutants, and environmental cleaning.  相似文献   
94.
The growth and optical properties of InAs quantum dots on a pure zinc blende InP nanowire are investigated. The quantum dots are formed in Stranski–Krastanov mode and exhibit pure zinc blende crystal structure. A substantial blueshift of the dots peak with a cube‐root dependence on the excitation power is observed, suggesting a type‐II band alignment. The peak position of dots initially red‐shifts and then blue‐shifts with increasing temperature, which is attributed to the carrier redistribution among the quantum dots. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
95.
Metal/metal (hydr)oxide heterostructures have been proposed as an efficient means to enhance the kinetics of hydrogen electrode reactions (the hydrogen evolution and the hydrogen oxidation reaction) on Pt, Ni, and other electrodes in the alkaline medium. However, the reasons for the faster electrode kinetics are still not fully understood. By considering two electrode materials, namely Pt and Ni, widely studied in hydrogen electrode reactions in alkaline media, this review brings to light differences in their pH-dependent behavior and likely different genesis of the enhancement in the presence of 3d transition metal oxides.  相似文献   
96.
We report that the twisted few layer graphite (tFL-graphite) is a new family of moiré heterostructures (MHSs), which has richer and highly tunable moiré flat band structures entirely distinct from all the known MHSs. A tFL-graphite is composed of two few-layer graphite (Bernal stacked multilayer graphene), which are stacked on each other with a small twisted angle. The moiré band structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers. Near the magic angle, a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive (parabolic or linear) bands at the Fermi level, thus, enhances the DOS at EF . This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems. Therefore, we expect strong multiband correlation effects in tFL-graphite. Meanwhile, a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites, indicating that tFL-graphite is also a novel topological flat band system.  相似文献   
97.
Van der Waals semiconductor heterostructures (VSHs) composed of two or more two-dimensional (2D) materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices. The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density. Herein, on the basis of comprehensive first-principles calculations, we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides (TMDs) and α-In2X3 (X = S, Se) ferroelectrics via switchable polarization field. Our calculated results indicate that the band bending of In2X3 layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In2X3 VSHs, which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field. Inspired by these findings, we demonstrate that doping-free p−n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density (1013−1014 cm−2), and the inversion of the VHSs from n−p junctions to p−i−n junctions has been realized by the polarization switching from upward to downward states. This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p−n van der Waals (vdW) junctions and opens the possibilities for self-powered and multifunctional device applications.  相似文献   
98.
《中国物理 B》2021,30(9):97601-097601
Two-dimensional(2 D) magnetic materials have aroused tremendous interest due to the 2 D confinement of magnetism and potential applications in spintronic and valleytronic devices. However, most of the currently 2 D magnetic materials are achieved by the exfoliation from their bulks, of which the thickness and domain size are difficult to control, limiting the practical device applications. Here, we demonstrate the realization of thickness-tunable rhombohedral Cr_2Se_3 nanosheets on different substrates via the chemical vapor deposition route. The magnetic transition temperature at about 75 K is observed. Furthermore, van der Waals heterostructures consisting of Cr_2Se_3 nanosheets and monolayer WS_2 are constructed.We observe the magnetic proximity effect in the heterostructures, which manifests the manipulation of the valley polarization in monolayer WS_2. Our work contributes to the vapor growth and applications of 2 D magnetic materials.  相似文献   
99.
《中国物理 B》2021,30(9):97201-097201
To study the electron transport properties in InGaN channel-based heterostructures,a revised Fang-Howard wave function is proposed by combining the effect of GaN back barrier.Various scattering mechanisms,such as dislocation impurity(DIS) scattering,polar optical phonon(POP) scattering,piezoelectric field(PE) scattering,interface roughness(IFR) scattering,deformation potential(DP) scattering,alloy disorder(ADO) scattering from InGaN channel layer,and temperature-dependent energy bandgaps are considered in the calculation model.A contrast of AlInGaN/AlN/InGaN/GaN double heterostructure(DH) to the theoretical AlInGaN/AlN/InGaN single heterostructure(SH) is made and analyzed with a full range of barrier alloy composition.The effect of channel alloy composition on InGaN channel-based DH with technologically important Al(In,Ga)N barrier is estimated and optimal indium mole fraction is 0.04 for higher mobility in DH with Al_(0.4)In_(0.07)Ga_(0.53)N barrier.Finally,the temperature-dependent two-dimensional electron gas(2 DEG) density and mobility in InGaN channel-based DH with Al_(0.83)In_(0.13)Ga_(0.0)4 N and Al_(0.4)In_(0.07)Ga_(0.53)N barrier are investigated.Our results are expected to conduce to the practical application of InGaN channel-based heterostructures.  相似文献   
100.
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide interest not only for the fundamental research,but also for the application of next generation electronic and optoelectronic devices.Herein,we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures.Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2.Due to the interaction between the In2Se3 and MoSe2 layers,the heterostructure shows the quenching and red-shift of photoluminescence.Moreover,the current rectification behavior and photovoltaic effect can be observed from the heterostructure,which is attributed to the unique band structure alignment of the heterostructure,and is further confirmed by Kevin probe force microscopy measurement.The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号