首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10715篇
  免费   1659篇
  国内免费   1401篇
化学   6852篇
晶体学   226篇
力学   541篇
综合类   86篇
数学   538篇
物理学   5532篇
  2024年   28篇
  2023年   93篇
  2022年   242篇
  2021年   259篇
  2020年   333篇
  2019年   328篇
  2018年   330篇
  2017年   342篇
  2016年   440篇
  2015年   391篇
  2014年   433篇
  2013年   1274篇
  2012年   595篇
  2011年   678篇
  2010年   530篇
  2009年   670篇
  2008年   642篇
  2007年   603篇
  2006年   628篇
  2005年   571篇
  2004年   516篇
  2003年   510篇
  2002年   431篇
  2001年   326篇
  2000年   392篇
  1999年   295篇
  1998年   232篇
  1997年   216篇
  1996年   211篇
  1995年   147篇
  1994年   172篇
  1993年   136篇
  1992年   119篇
  1991年   103篇
  1990年   74篇
  1989年   69篇
  1988年   56篇
  1987年   38篇
  1986年   50篇
  1985年   48篇
  1984年   52篇
  1983年   11篇
  1982年   28篇
  1981年   24篇
  1980年   16篇
  1979年   19篇
  1978年   9篇
  1977年   10篇
  1976年   7篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The polyaddition of fluorine‐containing bis(epoxide)s and fluorine‐containing triazine di(aryl ether)s were examined to give the corresponding fluorine‐containing poly(cyanurate)s. It was observed that the synthesized fluoropolymers had good thermal stabilities and good film‐forming properties. The glass transition temperatures (Tg's) and refractive‐indices (nD's) of synthesized polymers were determined by differential scanning calorimetry and ellipsometry, respectively, and it was found that the values of Tg's and nD's were supported by their fluorine containing ratios and skeletons. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4421–4429, 2007  相似文献   
2.
Ethylisobutylaluminoxane (EBAO) and its analogues were synthesized by a reaction between an triethylaluminum (Et3Al)/triisobutylaluminum (i‐Bu3Al) mixture and 4‐fluorobenzeneboronic acid, phenylboronic acid, or n‐butaneboronic acid and subsequent hydrolysis with water. They were used as cocatalysts in ethylene polymerization catalyzed by an iron complex {[(ArN?C(Me))2C5H3N]FeCl2, where Ar is 2,6‐diisopropylphenyl}. Polyethylene with a high molecular weight and a narrow molecular weight distribution was prepared with modified EBAOs, and the performance of the iron complex at high polymerization temperatures was greatly improved. The activators for the iron complex also affected the polymerization activity and the molecular weight of the resultant polyethylene. It was suggested that the stereo and electronic effects of the substitute groups of aluminoxane contributed to the improved performance of the new activators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1093–1099, 2004  相似文献   
3.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   
4.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004  相似文献   
5.
A series of metallodendrimers, assembled by means of bis(terpyridinyl)Ru(II) connectivity on poly(propylene imine) dendrimer scaffolds, with homogeneous or heterogeneous surfaces, were prepared. Differential scanning calorimetry and thermogravimetric analysis were used to determine their thermal behavior, glass‐transition temperatures, and the decomposition kinetics and temperatures; no synergy effects for these properties were observed for the heterogeneously surfaced constructs in contrast to the corresponding homogeneously coated materials, which exhibited different values depending on their surface functionalities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1487–1495, 2004  相似文献   
6.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   
7.
The diffraction efficiency and morphology of the transmission modes of holographic polymer dispersed liquid crystals were studied with respect to the molecular structure of poly(urethane acrylate) (PUA), the film (polymer/liquid crystal) and resin (oligomer/monomer) compositions, and the cell thickness. PUA, based on N‐vinylpyrrolidone and ethyl hexyl acrylate, with low‐molecular‐weight poly(propylene glycol) at a low oligomer content, showed high diffraction efficiency. The results were interpreted in terms of the monomer reactivity and polymer elasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 613–620, 2004  相似文献   
8.
For properly chosen elastomer compounds, thermorheological characterization is combined with an examination of the variation of the wet sliding friction with temperature. A conceptual argument leads to the assumption that the wet sliding friction should maximize at the energy dissipation peak associated with the dynamic softening transition at a characteristic frequency determined by the sliding speed and the effective smallest surface asperity scale. The dynamic softening transition is characterized with the peak in tan δ/Gn, where tan δ is the loss tangent, G′ is the elastic modulus, and n is a constant between 0 and 1. The William–Landel–Ferry transform is uncritically applied for extrapolating the position of the peak in tan δ/Gn at high frequencies. Even based on the criterion of tan δ, the results obtained on a concrete surface indicate that the effective smallest asperity scale is of order of 100 μm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2467–2478, 2004  相似文献   
9.
Unique crystallization and melting behavior in poly(aryl ether ketone ketone) containing alternated terephthalic and isophthalic moieties were studied by time-resolved synchrotron x-ray methods. Recently, this material has been shown to exhibit three polymorphs (forms I, II, and III). In this work, we further investigated their distinctive thermal properties and found that form I is the dominating and the most thermally stable phase while form II is favored by fast nucleation conditions and is the least stable phase. On the other hand, form III represents a minor intermediate phase that usually coexists with form I and can be transferred from form II and to form I. Structural and morphological changes in form I have been followed by simultaneous wide-angle x-ray diffraction (WAXD)/small-angle x-ray scattering (SAXS) measurements during cold- or melt-crystallization and subsequent melting. In all cases, a larger dimensional change was found in the crystallographic a-axis than the b-axis during heating and cooling. This may be due to the greater lateral stress variation with respect to temperature along the a direction of the primary lamellae which is induced by either the formation of secondary lamellae or the preferential chain-folding direction in poly(aryl ether ketone ketone)s. During the phase transitions of form II ← III in the cold-crystallized specimen and form III ← I in the melt-crystallized samples, lamellar variables (long period, lamellar thickness, and invariant) obtained from SAXS remain almost constant. This indicates that the density distribution in the long spacing is independent of the melting in form II or III. For melt-crystallization, the corresponding changes in unit-cell dimensions and lamellar morphology during the annealing-induced low endotherm are most consistent with the argument that these changes are due to the melting of thin lamellar population. © 1995 John Wiley & Sons, Inc.  相似文献   
10.
The calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Calcium‐containing poly(urethane ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI) with a mixture of Ca(HEEP)2 and poly(ethylene glycol) (PEG300 or PEG400) with di‐n‐butyltin dilaurate as a catalyst. A series of calcium‐containing PUEs of different compositions were synthesized with Ca(HEEP)2/PEG300 (or PEG400)/diisocyanate (HMDI or TDI) molar ratios of 2:2:4, 3:1:4, and 1:3:4 so that the coating properties of the PUEs could be studied. Blank PUEs without calcium‐containing ionic diols were also prepared by the reaction of PEG300 or PEG400 with HMDI or TDI. The PUEs were well characterized by Fourier transform infrared, 1H and 13C NMR, solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR, viscosity, solubility, and X‐ray diffraction studies. The thermal properties of the polymers were also studied with thermogravimetric analysis and differential scanning calorimetry. The PUEs were applied as top coats on acrylic‐coated leather, and their physicomechanical properties were also studied. The coating properties of PUEs, such as the tensile strength, elongation at break, tear strength, water vapor permeability, flexing endurance, cold crack resistance, abrasion resistance, color fastness, and adhesive strength, were better than the standard values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2865–2878, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号