A different approach, aiming to achieve the constant blur status of point-spread function (PSF) at a certain defocused plane,
is described. The correlation between the two PSF is used to control the PSF blur similarity, and simultaneously the Strehl
ratio is also used to control the PSF blur minimization. By designing the PSF so that it is significantly insensitive to defocus
or related defocus quantity, for example, due to temperature change, all the constantly blurred images can be accurately de-blurred
by a simple inverse restoration filter for an adequate range of defocus. We refer to that as “software lens compensation”
and apply a design method to solve the athermalization of middle wavelength infrared (MWIR) imaging systems. The resultant
PSF is almost invariant in the temperature range from −10 to 50°C at the same focal plane. Consequently, the constant blur
spot can be removed by a simple digital signal processing. Thus, clear and sharp de-blurred images at different temperatures
are obtained. 相似文献
There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements of in vivo systems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging of in vivo biological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloaded Q values of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range +/-50 MHz. This orientation of the capacitive element limits the electric field based loss of resonator Q observed with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited for in vivo applications. 相似文献
An inexpensive, dual-wavelength, videoimaging system that can be used for parallel observation of two fluorescent dyes is described. All four filters, two for excitation and two for emission, are placed on the same oscillating holder. Filters are coupled with a single dichroic mirror having two spectral windows. A coil driven by an electronic circuit connected to photosensors, which determine the position of the holder, moves the magnet that shifts the position of the filters. Since the filter holder is placed between two springs, it oscillates with the frequency of mechanical resonance. As a result the filter switching did not require much power and did not produce significant vibrations of the base. Switching frequencies up to 4.5 s–1 were reached with the first experimental device. System performance was tested using phospholipid vesicles loaded with water-soluble and membrane dyes. It has been demonstrated that the device can be used successfully in experiments on membrane fusion with rhodamine- and calcein-labeled liposomes. 相似文献
This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets. The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR imaging intensities solely. 相似文献
The “direct detection” of neuronal activity by MRI could offer improved spatial and temporal resolution compared to the blood oxygenation level-dependent (BOLD) effect. Here we describe initial attempts to use MRI to detect directly the neuronal currents resulting from spontaneous alpha wave activity, which have previously been shown to generate the largest extracranial magnetic fields. Experiments were successfully carried out on four subjects at 3 T. A single slice was imaged at a rate of 25 images per second under two conditions. The first (in darkness with eyes-closed) was chosen to promote alpha wave activity, while the second (eyes-open viewing a visual stimulus) was chosen to suppress it. The fluctuations of the phase and magnitude of the resulting MR image data were frequency analysed, and tested for the signature of both alpha wave activity and neuronal activity evoked by the visual stimulus.
Regions were found that consistently showed elevated power in fluctuations of the phase of the MR signal, in the frequency range of alpha waves, during the eyes-closed condition. It was conservatively assumed that if oscillations occurred at the same frequency in the magnitude signal from the same region or at the same frequency in the phase or magnitude signal from other regions overlying large vessels or cerebrospinal fluid (CSF), then the phase changes were not due to neuronal activity related to alpha waves. Using these criteria the data obtained were consistent with direct detection of alpha wave activity in three of the four volunteers. No significant MR signal fluctuations due to evoked activity were identified. 相似文献
New investigations in MRI of a mouse heart showed high-contrast cardiac images and thereby the possibility of doing functional cardiac studies of in vivo mice. But is MRI, in addition, capable of visualizing microstructures such as the coronary arteries and the heart valves of a living mouse? To answer this question, 2D and 3D gradient echo sequences with and without flow compensation were used to image the coronary arteries. To increase signal-to-noise ratio, a birdcage resonator was optimized for mouse heart imaging. Contrast between blood and myocardium was achieved through the inflow effect. A segmented three-dimensional FLASH sequence acquired with a multiple overlap thin slab technique showed the best results. With this technique an isotropic resolution of 100 microm was achieved. The left coronary artery could be visualized up to the apex of the heart. This is demonstrated with short axis views and 3D surface reconstructions of the mouse heart. The four cardiac valves were also visible with the 3D method. 相似文献
A new type of contrast called dipolar contrast is obtained by a decrease in the dipolar line broadening of protons. This contrast is usable for dense tissue NMR imaging and more generally for the study of dipolar linked protons in biological tissues. The sequence used is based on a variant of the Magic Sandwich Echoes (MSE) technique. In vitro experiments on a tendon sample are used to reinforce the image intensity of regions where the direct proton dipolar interaction exists. 相似文献
A family of monodisperse YF3, YF3:Ce3+ and YF3:Ce3+/Ln3+ (Ln=Tb, Eu) mesocrystals with a morphology of a hollow spindle can be synthesized by a solvothermal process using yttrium nitrate and NH4F as precursors. The effects of reaction time, fluorine source, solvents, and reaction temperature on the synthesis of these mesocrystals have been studied in detail. The results demonstrate that the formation of a hollow spindle‐like YF3 can be ascribed to a nonclassical crystallization process by means of a particle‐based reaction route in ethanol. It has been shown that the fluorine sources selected have a remarkable effect on the morphologies and crystalline phases of the final products. Moreover, the luminescent properties of Ln3+‐doped and Ce3+/Ln3+‐co‐doped spindle‐like YF3 mesocrystals were also investigated. It turns out that Ce3+ is an efficient sensitizer for Ln3+ in the spindle‐like YF3 mesocrystals. Remarkable fluorescence enhancement was observed in Ce3+/Ln3+‐co‐doped YF3 mesocrystals. The mechanism of the energy transfer and electronic transition between Ce3+ and Ln3+ in the host material of YF3 mesocrystals was also explored. The cytotoxicity study revealed that these YF3‐based nanocrystals are biocompatible for applications, such as cellular imaging. 相似文献