首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3930篇
  免费   667篇
  国内免费   195篇
化学   3851篇
晶体学   18篇
力学   202篇
综合类   10篇
数学   63篇
物理学   648篇
  2024年   10篇
  2023年   48篇
  2022年   126篇
  2021年   111篇
  2020年   219篇
  2019年   142篇
  2018年   135篇
  2017年   123篇
  2016年   296篇
  2015年   248篇
  2014年   253篇
  2013年   312篇
  2012年   246篇
  2011年   253篇
  2010年   205篇
  2009年   265篇
  2008年   269篇
  2007年   257篇
  2006年   242篇
  2005年   156篇
  2004年   151篇
  2003年   137篇
  2002年   80篇
  2001年   76篇
  2000年   70篇
  1999年   48篇
  1998年   55篇
  1997年   35篇
  1996年   28篇
  1995年   29篇
  1994年   18篇
  1993年   27篇
  1992年   16篇
  1991年   14篇
  1990年   10篇
  1989年   6篇
  1988年   17篇
  1987年   5篇
  1985年   11篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1970年   2篇
  1969年   3篇
  1967年   3篇
排序方式: 共有4792条查询结果,搜索用时 9 毫秒
101.
Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C?C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated.  相似文献   
102.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   
103.
Common wisdom might anticipate that two methyl groups placed on a molecular migration route should act as an impediment. However, the “conducted tour” migration of Li+(THF)4 across the aryl ring (“π-route”) during the cis/trans stereoinversion of α-arylvinyllithiums had been found to occur with practically equal velocities in the presence of either one or two ortho-alkyl substituents. We now report that the omission of both ortho-methyl groups retards the stereoinversion process. In order to arrive at an answer to the title question, we investigate the aggregation equilibria and microsolvation states of ortho, ortho′-unsubstituted α-lithiostyrenes by means of approved secondary NMR criteria. Beyond such necessary knowledge about the ground-state properties, we provide kinetic evidence showing that the retarded cis/trans stereoinversion of α-lithiostyrene proceeds by the pseudomonomolecular, ionic mechanism with Li+(THF)4 migration.  相似文献   
104.
A palladium(II)‐catalyzed γ‐C?H amination of cyclic alkyl amines to deliver highly substituted azetidines is reported. The use of a benziodoxole tosylate oxidant in combination with AgOAc was found to be crucial for controlling a selective reductive elimination pathway to the azetidines. The process is tolerant of a range of functional groups, including structural features derived from chiral α‐amino alcohols, and leads to the diastereoselective formation of enantiopure azetidines.  相似文献   
105.
In 1923, Wieland and Wingler reported that in the molecular hydrogen producing reaction of hydrogen peroxide with formaldehyde in basic solution, free hydrogen atoms (H.) are not involved. They postulated that bis(hydroxymethyl)peroxide, HOCH2OOCH2OH, is the intermediate, which decomposes to yield H2 and formate, proposing a mechanism that would nowadays be considered as a “concerted process”. Since then, several other (conflicting) “mechanisms” have been suggested. Our NMR and Raman spectroscopic and kinetic studies, particularly the determination of the deuterium kinetic isotope effect (DKIE), now confirm that in this base‐dependent reaction, both H atoms of H2 derive from the CH2 hydrogen atoms of formaldehyde, and not from the OH groups of HOCH2OOCH2OH or from water. Quantum‐chemical CBS‐QB3 and W1BD computations show that H2 release proceeds through a concerted process, which is strongly accelerated by double deprotonation of HOCH2OOCH2OH, thereby ruling out a free radical pathway.  相似文献   
106.
We report the first generation and characterization of elusive Breslow intermediates derived from aromatic N‐heterocyclic carbenes (NHCs), namely benzimidazolin‐2‐ylidenes (NMR, X‐ray analysis) and thiazolin‐2‐ylidenes (NMR). In the former case, the diamino enols were generated by reaction of the free N,N‐bis(2,6‐diisopropylphenyl)‐ and N,N‐bis(mesityl)‐substituted benzimidazolin‐2‐ylidenes with aldehydes while the dimer of 3,4,5‐trimethylthiazolin‐2‐ylidene served as the starting material in the latter case. The unambiguous NMR identification of the first thiazolin‐2‐ylidene‐based Breslow intermediate rests on double 13C labeling of both the NHC and the aldehyde component. The acyl anion reactivity was confirmed by benzoin formation with excess aldehyde.  相似文献   
107.
Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O2 batteries, and are believed to form and decompose reversibly in metal‐O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3→4 Li++4 e?+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal‐O2 batteries, question the possibility of a reversible metal‐O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li2CO3.  相似文献   
108.
The formation of networks through light‐initiated radical polymerization allows little freedom for tailored network design. The resulting inhomogeneous network architectures and brittle material behavior of such glassy‐type networks limit the commercial application of photopolymers in 3D printing, biomedicine, and microelectronics. An ester‐activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate‐based networks. The chain transfer step induced by EVS reduces the kinetic chain length of the photopolymer, thus shifting the gel point to higher conversion, which results in reduced shrinkage stress and higher overall conversion. The resulting, more homogeneous network is responsible for the high toughness of the material. The unique property of EVS to promote nearly retardation‐free polymerization can be attributed to the fact that after the transfer step no polymerizable double bond is formed, as is usually seen in classical chain transfer agents. Laser flash photolysis, theoretical calculations, and photoreactor studies were used to elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit improved mechanical performance making EVS an outstanding candidate for the 3D printing of tough photopolymers.  相似文献   
109.
Using the previously designed biphenyl‐2‐ylphosphine ligand, featuring a remote tertiary amino group, the first gold‐catalyzed intermolecular hydroalkenylation of alkynes has been developed. Synthetically valuable conjugated dienyl alcohols are formed in moderate to good yields. A range of alkenyltrifluoroborates are allowed as the alkenyl donor, and no erosion of alkene geometry and/or the propargylic configuration are detected. DFT calculations confirm the critical role of the remote basic group in the ligand as a general‐base catalyst for promoting this novel gold catalysis with good efficiency.  相似文献   
110.
The mechanism of the rhodium-catalyzed reductive coupling of 1,3-diynes and vicinal dicarbonyl compounds employing H(2) as reductant was investigated by density functional theory. Oxidative coupling through 1,4-addition of the Rh(I)-bound dicarbonyl to the conjugated diyne via a seven-membered cyclic cumulene transition state leads to exclusive formation of linear adducts. Diyne 1,4-addition is much faster than the 1,2-addition to simple alkynes. The 1,2-dicarbonyl compound is bound to rhodium in a bidentate fashion during the oxidative coupling event. The chemo-, regio-, and enantioselectivities of this reaction were investigated and are attributed to this unique 1,4-addition pathway. The close proximity of the ligand and the alkyne substituent distal to the forming C-C bond controls the regio- and enantioselectivity: coupling occurs at the sterically more demanding alkyne terminus, which minimizes nonbonded interaction with the ligand. A stereochemical model is proposed that accounts for preferential formation of the (R)-configurated coupling product when (R)-biaryl phosphine ligands are used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号