首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23666篇
  免费   5284篇
  国内免费   2847篇
化学   14060篇
晶体学   202篇
力学   238篇
综合类   222篇
数学   1722篇
物理学   15353篇
  2024年   79篇
  2023年   315篇
  2022年   938篇
  2021年   1000篇
  2020年   955篇
  2019年   945篇
  2018年   797篇
  2017年   893篇
  2016年   1207篇
  2015年   1093篇
  2014年   1438篇
  2013年   2074篇
  2012年   1668篇
  2011年   1630篇
  2010年   1401篇
  2009年   1505篇
  2008年   1671篇
  2007年   1654篇
  2006年   1530篇
  2005年   1359篇
  2004年   1166篇
  2003年   1029篇
  2002年   909篇
  2001年   634篇
  2000年   693篇
  1999年   505篇
  1998年   511篇
  1997年   392篇
  1996年   297篇
  1995年   299篇
  1994年   193篇
  1993年   181篇
  1992年   158篇
  1991年   125篇
  1990年   101篇
  1989年   96篇
  1988年   59篇
  1987年   57篇
  1986年   40篇
  1985年   36篇
  1984年   38篇
  1983年   16篇
  1982年   19篇
  1981年   25篇
  1980年   13篇
  1979年   11篇
  1978年   13篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
991.
Multi‐component organic nanocrystals that are comprised of two or more supramolecular building blocks can be used to extend the design and assembly scope of solid molecular materials. Herein, we report the use of ultrasonication to prepare halogen‐bonded stilbene‐based nano‐cocrystals that exhibit different photoemission properties, including one‐ and two‐phonon emission and fluorescence lifetimes, relative to those of macrodimensional crystals. The structural transformation from nano‐cocrystals into nanocrystals upon heating results in a luminescence red‐shift from greenish blue to yellow. The temperature‐dependent ratiometric luminescence may allow such nano‐cocrystals to be used as fluorescent sensors and thermosensitive materials.  相似文献   
992.
993.
As the demand for probes suitable for sensor development increases, investigation of approaches that utilize known successful receptors gains in general importance. This study describes a two‐prong approach that can be used as a guide to developing sensors from known receptors. First, the conversion of a simple receptor, calix[4]pyrrole, into a fluorescent probe to establish a ratiometric signal is described. Secondly, the sensors that employ an output from a single ratiometric calix[4]pyrrole probe are fabricated by using poly(ether‐urethane) hydrogel copolymers. These hydrogels are designed to absorb, internalize and transport aqueous electrolytes. A sensor array of ten different poly(ether‐urethane) matrices with varying comonomer proportions were doped with a single probe and were exposed to eight different anions: acetate, benzoate, fluoride, chloride, phosphate, pyrophosphate, hydrogen sulfide, and cyanide, eight urine samples and anti‐inflammatory drugs (NSAIDs). The poly(ether‐urethane) matrices comprise different proportions of anion‐binding urethane moieties and different hydrophilicity given by the ratio between ethylene glycol ether and butylene glycol ether. This diversity in the hydration behavior provides different environment polarity, in which the recognition and self‐assembly processes display enough diverse behavior to allow for unique response of the probe to the analytes. Furthermore, a single probe is shown to recognize eight different aqueous anions and eight urine samples when embedded in ten different polyurethanes in an array that displays 100 % classification accuracy. To demonstrate the potential of the concept for quantitative studies, an estimation of non‐steroidal anti‐inflammatory drugs ibuprofen and diclofenac in water and in saliva was performed. A limit of detection of 0.1 ppm and a dynamic range of 0.1–0.6 and 0.05–60 ppm was observed, respectively. Given the general difficulty of chemosensors to recognize aqueous anions, the fact that one probe recognizes eight different analytes attests to an enormous effect of the polymer environment on the recognition process. This method could be used to generate a variety of sensor arrays for various analyses including species that are difficult to recognize, such as small‐molecule‐ and inorganic anions.  相似文献   
994.
Heteronuclear complexes {[Hg(R)2][Au(R′)(PMe3)]2}n (R=R′=C6Cl2F3 ( 3 ); R=R′=C6F5 ( 4 ); R=C6Cl2F3, R′=C6F5 ( 5 ); R=C6F5, R′=C6Cl2F3 ( 6 )) were prepared by the treatment of the corresponding organomercury compounds, [Hg(C6X5)2], with two equivalents of [Au(C6X5)(PMe3)]. Their crystal structures, as determined by using X‐ray diffraction methods, display Au???Hg interactions. Although only compound 4 and 5 show luminescence in the solid state, all of these compounds quench the fluorescence of naphthalene in solution. Solution studies of these derivatives suggest a cooperative effect of the gold(I) center in switching on the quenching capabilities of the [Hg(C6X5)2] synthon with naphthalene. Theoretical studies confirmed the quenching ability of the organomercury species in the presence of gold.  相似文献   
995.
Site‐specific labeling of proteins with lanthanide ions offers great opportunities for investigating the structure, function, and dynamics of proteins by virtue of the unique properties of lanthanides. Lanthanide‐tagged proteins can be studied by NMR, X‐ray, fluorescence, and EPR spectroscopy. However, the rigidity of a lanthanide tag in labeling of proteins plays a key role in the determination of protein structures and interactions. Pseudocontact shift (PCS) and paramagnetic relaxation enhancement (PRE) are valuable long‐range structure restraints in structural‐biology NMR spectroscopy. Generation of these paramagnetic restraints generally relies on site‐specific tagging of the target proteins with paramagnetic species. To avoid nonspecific interaction between the target protein and paramagnetic tag and achieve reliable paramagnetic effects, the rigidity, stability, and size of lanthanide tag is highly important in paramagnetic labeling of proteins. Here 4′‐mercapto‐2,2′: 6′,2′′‐terpyridine‐6,6′′‐dicarboxylic acid (4MTDA) is introduced as a a rigid paramagnetic and fluorescent tag which can be site‐specifically attached to a protein by formation of a disulfide bond. 4MTDA can be readily immobilized by coordination of the protein side chain to the lanthanide ion. Large PCSs and RDCs were observed for 4MTDA‐tagged proteins in complexes with paramagnetic lanthanide ions. At an excitation wavelength of 340 nm, the complex formed by protein–4MTDA and Tb3+ produces high fluorescence with the main emission at 545 nm. These interesting features of 4MTDA make it a very promising tag that can be exploited in NMR, fluorescence, and EPR spectroscopic studies on protein structure, interaction, and dynamics.  相似文献   
996.
The reactions of laser‐ablated Au, Ag, and Cu atoms with F2 in excess argon and neon gave new absorptions in the M? F stretching region of their IR spectra, which were assigned to metal‐fluoride species. For gold, a Ng? AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF2 and MF3 (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF5 molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au2F6 molecule.  相似文献   
997.
Fluorescent nanoparticles (FNPs) are obtained in water by self‐assembly from a polymeric ionic liquid, fluorescent carboxylate moiety, and a surfactant through two main supramolecular interactions, that is, ionic bonds and hydrophobic/hydrophilic interactions. The hydrophobicity of the surfactant is tunable and a highly hydrophobic surfactant increases the fluorescence intensity and stability of the FNPs. The fluorescence of the FNPs is sensitive to a quenching effect by various ions with high selectivity, and consequently, they may be used as sensors. The self‐assembly approach used to generate the FNPs is considerably simpler than other methods based on more challenging synthetic methods and the flexibility of the approach should allow a wide and diverse range of FNPs to be prepared with specific sensor applications.  相似文献   
998.
Four new water‐soluble polyglycerol‐dendronized perylene, terrylene, and quaterrylene bisimides have been synthesized and characterized with respect to their optical properties in polar organic solvents and water by using UV/Vis and fluorescence spectroscopy. All of these dyes were highly soluble in water, but the size of the chosen polyglycerol dendron was only sufficient to completely suppress dye aggregation for the core‐unsubstituted perylene derivative. Their high solubility in water and their absorption and emission wavelengths up to the NIR region make the core‐unsubstituted perylene and terrylene bisimides ideal candidates for applications in bioimaging, whilst the lack of fluorescence for quaterrylene bisimide in all polar solvents does not warrant further investigation of this chromophore in fluorescence and imaging applications. Likewise, tuning of the emission of rylene bisimides towards longer wavelengths by employing electron‐donating bay substituents is not a promising strategy, owing to the lower fluorescence quantum yields in polar solvents and, in particular, in water.  相似文献   
999.
A facile, economic and green one‐step hydrothermal synthesis route using dopamine as source towards photoluminescent carbon nanoparticles (CNPs) is proposed. The as‐prepared CNPs have an average size about 3.8 nm. The emission spectra of the CNPs are broad, ranging from approximately 380 (purple) to approximately 525 nm (green), depending on the excitation wavelengths. Due to the favorable optical properties, the CNPs can readily enter into A549 cells and has been used for multicolor biolabeling and bioimaging. Most importantly, the as‐prepared CNPs contain distinctive catechol groups on their surfaces. Due to the special response of catechol groups to Fe3+ ions, we further demonstrate that such wholly new CNPs can serve as a very effective fluorescent sensing platform for label‐free sensitive and selective detection of Fe3+ ions and dopamine with a detection limit as low as 0.32 μM and 68 nM , respectively. The new “mix‐and‐detect” strategy is simple, green, and exhibits high sensitivity and selectivity. The present method was also applied to the determination of Fe3+ ions in real water samples and dopamine in human urine and serum samples successfully.  相似文献   
1000.
Double‐labeled oligonucleotide probes containing fluorophores interacting by energy‐transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2′‐O‐propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid‐phase copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy‐transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40–110 nm), quenched fluorescence of single‐stranded probes accompanied by up to 7.7‐fold light‐up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single‐nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号