首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28893篇
  免费   4241篇
  国内免费   2998篇
化学   19861篇
晶体学   643篇
力学   1387篇
综合类   236篇
数学   1054篇
物理学   12951篇
  2024年   58篇
  2023年   213篇
  2022年   556篇
  2021年   615篇
  2020年   842篇
  2019年   832篇
  2018年   812篇
  2017年   963篇
  2016年   1253篇
  2015年   1160篇
  2014年   1233篇
  2013年   3008篇
  2012年   1692篇
  2011年   1761篇
  2010年   1471篇
  2009年   1650篇
  2008年   1678篇
  2007年   1647篇
  2006年   1643篇
  2005年   1468篇
  2004年   1411篇
  2003年   1286篇
  2002年   1318篇
  2001年   901篇
  2000年   990篇
  1999年   778篇
  1998年   658篇
  1997年   557篇
  1996年   531篇
  1995年   485篇
  1994年   419篇
  1993年   342篇
  1992年   311篇
  1991年   242篇
  1990年   196篇
  1989年   161篇
  1988年   153篇
  1987年   130篇
  1986年   127篇
  1985年   106篇
  1984年   115篇
  1983年   46篇
  1982年   70篇
  1981年   47篇
  1980年   42篇
  1979年   46篇
  1978年   18篇
  1977年   14篇
  1976年   11篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In the idealized two‐phase model of a semicrystalline polymer, the amorphous intercrystalline layers are considered to have the same properties as the fully‐amorphous polymer. In reality, these thin intercrystalline layers can be substantially influenced by the presence of the crystals, as individual polymer molecules traverse both crystalline and amorphous phases. In polymers with rigid backbone units, such as poly(etheretherketone), PEEK, previous work has shown this coupling to be particularly severe; the glass transition temperature (Tg) can be elevated by tens of degrees celsius, with the magnitude of the elevation correlating directly with the thinness of the amorphous layer. However, this connection has not been explored for flexible‐chain polymers, such as those formed from vinyl‐type monomers. Here, we examine Tg in both isotactic polystyrene (iPS) and syndiotactic polystyrene (sPS), crystallized under conditions that produce a range of amorphous layer thicknesses. Tg is indeed shown to be elevated relative to fully‐amorphous iPS and sPS, by an amount that correlates with the thinness of the amorphous layer; the magnitude of the effect is severalfold less than that in PEEK, consistent with the minimum lengths of polymer chain required to make a fold in the different cases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1198–1204, 2007  相似文献   
32.
The physical structure and compatibility of solution-cast Antheraea pernyi/Bombyx mori silk fibroin blend films were stuided by differential scanning calorimetry (DSC), thermomechanical (TMA) and thermogravimetric (TGA) analysis, dynamic viscoelastic measurement, infrared spectroscopy, and x-ray diffractometry. The DSC curves of the blend films showed independent endotherms at 280 and 358°C, corresponding to the thermal decomposition of B. mori and A. pernyi silk fibroins with random coil conformation. The intensity was roughly proportionate to the amount of each component in the blend. The thermal behavior corresponding to the conformational transitions induced by heating on A. pernyi and B. mori silk fibroins overlapped in the temperature range 190–230°C. Thermal expansion and contraction properties, as well as weight retention behavior of the blend films were intermediate between the pure components, as shown by the TMA and TGA curves. The onset temperature of the storage modulus curve decreased markedly, approaching that of B. mori silk fibroin film when the amount of this component in the blend increased. The loss modulus curve of the blend films showed two peaks at ca. 190 and 210°C, the former corresponding to B. mori, and the latter to A. pernyi silk fibroin. Infrared spectra of the blends exhibited absorption bands characteristic of the pure components overlapping in the spectral region 2000–400 cm?1. The x-ray diffraction peaks at 23 and 21.5°, attributed to the crystalline spacings of A. pernyi and B. mori fibroins, respectively, overlapped in the diffraction curves of the blends, while the peak at 11.4°, of A. pernyi, increased as the content of this fibroin in the blend increased. The degree of crystallinity, calculated from the x-ray diffraction curves, diminished as the amount of B. mori silk fibroin decreased. A low degree of compatibility exists between the two fibroins when they are cast from aqueous solution in the experimental conditions adopted in this work. © 1994 John Wiley & Sons, Inc.  相似文献   
33.
Poly(butylene naphthalate) (PBN), poly(diethylene naphthalate) (PDEN), and poly(thiodiethylene naphthalate) (PTDEN) were synthesized and characterized in terms of chemical structure and molecular weight. The polyesters were examined by TGA, DSC, and DMTA. All the polymers showed a good thermal stability, even though depending on chemical structure. At room temperature they appeared as semicrystalline materials; the effect of the introduction along the PBN polymer chain of ether oxygen atoms or sulfur ones was a lowering in the Tg value, a decrement of Tm, and a decrease of the crystallization rate. Changing in chemical structure also affects the main α absorption associated with the glass transition which moves to lower temperature and whose energetic requirements decrease. The results were explained as due to the presence of highly flexible C? S? C or C? O? C bonds in the polymeric chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1694–1703, 2007  相似文献   
34.
The motivation of this work is to provide reliable and accurate modeling studies of the physical (surface, thermal, mechanical and gas diffusion) properties of chitosan (CS) polymer. Our computational efforts have been devoted to make a comparison of the structural bulk properties of CS with similar type of polymers such as chitin and cellulose through cohesive energy density, solubility parameter, hydrogen bonding, and free volume distribution calculations. Atomistic modeling on CS polymer using molecular mechanics (MM) and molecular dynamics (MD) simulations has been carried out in three dimensionally periodic and effective two dimensionally periodic condensed phases. From the equilibrated structures, surface energies were computed. The equilibrium structure of the films shows an interior region of mass density close to the value in the bulk state. Various components of energetic interactions have been examined in detail to acquire a better insight into the interactions between bulk structure and the film surface. MD simulation (NPT ensemble) has also been used to obtain polymer specific volume as a function of temperature. It is demonstrated that these VT curves can be used to locate the volumetric glass transition temperature (Tg) reliably. The mechanical properties of CS have been obtained using the strain deformation method. Diffusion coefficients of O2, N2, and CO2 gas molecules at 300 K in CS have been estimated. The calculated properties of CS are comparable with the experimental values reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1260–1270, 2007  相似文献   
35.
Poly(ε‐caprolactone)‐based segmented polyurethanes (PCLUs) were prepared from poly(ε‐caprolactone) diol, diisocyanates (DI), and 1,4‐butanediol. The DIs used were 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluenediisocyanate (TDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small‐angle X‐ray scattering, and dynamic mechanical analysis were employed to characterize the two‐phase structures of all PCLUs. It was found that HDI‐ and MDI‐based PCLUs had higher degree of microphase separation than did IPDI‐ and TDI‐based PCLUs, which was primarily due to the crystallization of HDI‐ and MDI‐based hard‐segments. As a result, the HDI‐based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard‐segment domains during the sample deformation was responsible for the incomplete shape‐recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 557–570, 2007  相似文献   
36.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   
37.
The reactivity of square planar palladium(II) and platinum(II) complexes in trans or cis configuration, namely trans or cis‐[dichlorobis(tributylphosphine)platinum(II)] and trans‐[dichlorobis(tributylphosphine)palladium(II)] with 1,1′‐bis(ethynyl) 4,4′‐biphenyl, DEBP, leading to π‐conjugated organometallic oligomeric and polymeric metallaynes, was investigated by a systematic variation of the reaction conditions. The formation of polymers and oligomers with defined chain length [? M(PBu3)2 (C?C? C6H4? C6H4? C?C? )]n (n = 3–10 for the oligomers, n = 20–50 for the polymers) depends on the configuration of the precursor Pt(II) and Pd(II) complexes, the presence/absence of the catalyst CuI, and the reaction time. A series of model reactions monitored by XPS, GPC, and NMR 31P spectroscopy showed the route to modulate the chain growth. As expected, the nature of the transition metal (Pt or Pd) and the molecular weight of the polymers markedly influence the photophysical characteristics of the polymetallaynes, such as optical absorption and emission behavior. Polymetallaynes with nanostructured morphology could be obtained by a simple casting procedure of polymer solutions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3311–3329, 2007  相似文献   
38.
Below a critical thickness, of about 60 nm, the glass transition temperature of polystyrene (PS) films decreases with film thickness, as demonstrated using free‐standing films. A geometrical model is developed here describing this phenomenon in the case of ideal (Gaussian) chains. This model, which can be considered as an application of the free volume model, assumes that the decrease of the glass transition temperature from thick to ultrathin films is due to the modification of the interpenetration between neighboring chains. The theoretical curve deduced from the model is in excellent agreement with the PS experimental results, without using any adjustable parameters. From these results, it can be concluded that new chain motions, usually buried in bulk samples, are expressed by the presence of the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 10–17, 2007  相似文献   
39.
The paper presents an efficient finite volume method for unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements for both single‐ and two‐phase flows. Mathematical model used in computations is based on the ensemble averaged conservation equations. These equations are solved for each phase and in case of single‐phase flow reduce to the transient Reynolds‐averaged Navier–Stokes (TRANS) equations. Transient flow induced by rotating impellers is thus resolved in time. The use of unstructured grids allows an easy and flexible meshing for the entire flow domain. Polyhedral cell volumes are created on the arbitrary mesh interface placed between rotating and static parts. Cells within the rotating parts move each time step and the new faces are created on the arbitrary interfaces only, while the rest of the domain remain ‘topologically’ unchanged. Implicit discretization scheme allows a wide range of time‐step sizes, which further reduce the computational effort. Special attention is given to the interpolation practices used for the reconstruction of the face quantities. Mass fluxes are recalculated at the beginning of each time step by using an interpolation scheme, which enhances the coupling between the pressure and velocity fields. The model has been implemented into the commercially available CFD code AVL SWIFT (AVL AST, SWIFT Manual 3.1, AVL List GmbH, Graz, Austria, 2002). Single‐phase flow in a mixing vessel stirred by a six‐bladed Rushton‐type turbine and two‐phase flow in aerated stirred vessel with the four‐blade Rushton impeller are simulated. The results are compared with the available experimental data, and good agreement is observed. The proposed algorithm is proved to be both stable and accurate for single‐phase as well as for the two‐phase flows calculations. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   
40.
The sterically stabilized emulsion polymerization of styrene initiated by a water‐soluble initiator at different temperatures has been investigated. The rate of polymerization (Rp) versus conversion curve shows the two non‐stationary‐rate intervals typical for the polymerization proceeding under non‐stationary‐state conditions. The shape of the Rp versus conversion curve results from two opposite effects—the increased number of particles and the decreased monomer concentration at reaction loci as the polymerization advances. At elevated temperatures the monomer emulsion equilibrates to a two‐phase or three‐phase system. The upper phase is transparent (monomer), and the lower one is blue colored, typical for microemulsion. After stirring such a multiphase system and initiation of polymerization, the initial coarse polymer emulsion was formed. The average size of monomer/polymer particles strongly decreased up to about 40% conversion and then leveled off. The initial large particles are assumed to be highly monomer‐swollen particles formed by the heteroagglomeration of unstable polymer particles and monomer droplets. The size of the “highly monomer” swollen particles continuously decreases with conversion, and they merge with the growing particles at about 40–50% conversion. The monomer droplets and/or large highly monomer‐swollen polymer particles also serve as a reservoir of monomer and emulsifier. The continuous release of nonionic (hydrophobic) emulsifier from the monomer phase increases the colloidal stability of primary particles and the number of polymer particles, that is, the particle nucleation is shifted to the higher conversion region. Variations of the square and cube of the mean droplet radius with aging time indicate that neither the coalescence nor the Ostwald ripening is the main driving force for the droplet instability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 804–820, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号