首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6353篇
  免费   1158篇
  国内免费   502篇
化学   1878篇
晶体学   42篇
力学   511篇
综合类   47篇
数学   157篇
物理学   5378篇
  2024年   2篇
  2023年   19篇
  2022年   102篇
  2021年   111篇
  2020年   134篇
  2019年   86篇
  2018年   129篇
  2017年   235篇
  2016年   272篇
  2015年   217篇
  2014年   449篇
  2013年   504篇
  2012年   364篇
  2011年   434篇
  2010年   313篇
  2009年   428篇
  2008年   512篇
  2007年   438篇
  2006年   396篇
  2005年   398篇
  2004年   373篇
  2003年   329篇
  2002年   276篇
  2001年   241篇
  2000年   231篇
  1999年   186篇
  1998年   161篇
  1997年   154篇
  1996年   115篇
  1995年   104篇
  1994年   72篇
  1993年   44篇
  1992年   50篇
  1991年   43篇
  1990年   24篇
  1989年   20篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   1篇
  1957年   2篇
排序方式: 共有8013条查询结果,搜索用时 125 毫秒
991.
The effect of alkali treatment and fiber length on the wear performance of the Palmyra palm leaf stalk fiber (PPLSF)–polyester composites and the possibilities for using PPLSF in wear resistance applications were explored at different speeds and normal loads for constant sliding distance using pin on disk wear tester as per the ASTM G99 standard. Unsaturated polyester was used as matrix, and composites were prepared by molding in an open mold and pouring the resin. It was observed that wear loss and coefficient of friction reduced due to reinforcement of PPLSF. Reinforcing alkali-treated PPLSF in the matrix has further reduced the wear loss and coefficient of friction. At high speed and high load condition considered in this study shows that the wear loss and coefficient of friction were reduced by 64 and 22%, respectively, for alkali-treated fiber composites compared with untreated fiber composites. The effect of fiber length on the wear performance was also evaluated and optimal set of parameters that would result in minimum wear loss and coefficient of friction was determined by design of experimental method using Taguchi’s orthogonal array. The surface morphology of the composites after wear tests was examined using scanning electron microscopy to analyze the mechanism of wear.  相似文献   
992.
Banana fiber (BF)-reinforced low-density polyethylene (LDPE) unidirectional composites were fabricated by the compression molding process with 40 wt% fiber loading. The fibers were modified with methylacrylate (MA) mixed with methanol (MeOH) along with 2% benzyl peroxide under thermal curing method at different temperatures (50–90 °C) for different curing times (10–50 min) in order to have better compatibility with the matrix. The effect of fiber surface modification on the mechanical properties (tensile and impact properties) of the composites were evaluated. Monomer concentration, curing temperature, and curing time were optimized in terms of polymer loading and mechanical properties. The mechanical properties were found to be improved based on the improved interaction between the reinforcement and the matrix. Optimized BFs were again treated with 2–5 wt% starch solutions and composites made of 4% starch treated BF showed the highest mechanical properties than that of MA treated composites. Scanning electron microscopy (SEM) was performed to get an insight into the morphology of the composites. Water uptake and soil degradation test of the composites were also investigated.  相似文献   
993.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
994.
In this study, in‐column fiber‐optic (ICFO) laser‐induced fluorescence (LIF) detection technique is coupled with capillary electrophoresis (CE) for the rapid separation of neodymium for the first time. The effects of buffer concentration, buffer pH, and separation voltage on the CE behaviors, including electrophoretic efficiency and detection sensitivity, are investigated in detail. Under the optimal condition determined in this study (15 mM borate buffer, pH 10.50, separation voltage 24 kV), neodymium could be separated effectively from the neighboring lanthanides (praseodymium and samarium) within several minutes, and the limit of detection for neodymium is estimated to be at the ppt level. The ICFO‐LIF‐CE system assembled in this study exhibits unique performance characteristics such as low cost and flexibility. Meanwhile, the separation efficiency and detection sensitivity of the assembled CE system are comparable to or somewhat better than those obtained in the previous traditional CE systems, indicating the potential of the assembled CE system for practical applications in the fields of spent nuclear fuel analysis, nuclear waste disposal/treatment, and nuclear forensics.  相似文献   
995.
Electrospun fibers of hydrophilic polymers meet challenges in a rapid degradation of fiber matrices and discharge of antibiotics to comply with requirements of infection control as a dermal regeneration template. In the current study, a pH conversion process is initially developed to ensure fluent electrospinning, an efficient in situ cross‐linking of electrospun gelatin fibers with oxidized alginate and simultaneous loading of gentamicin sulfate (GS) and hydrophobic ciprofloxacin into fibers. The dual drug‐loaded fibers indicate a complete release of GS during 6 d and a sustained release of ciprofloxacin for over three weeks, and the antibiotics release indicates significant growth inhibitions on Pseudomonas aeruginosa and Staphylococcus epidermidis. The wound healing efficacy is evaluated on a deep burn model infected with 108 CFU of P. aeruginosa. Compared with fibers with loaded individual drugs, the concomitant release of GS and ciprofloxacin significantly reduces the bacteria numbers in wound and livers, at around 2.30 × 105 and 1.25 × 103 CFU after 3 d, respectively. The wound re‐epithelization, blood vessel formation, collagen deposition, and tissue remodeling process are accelerated with a complete healing observed after 21 d. This study provides a feasible strategy to design cross‐linked hydrophilic fibers with an extended drug release for biomedical applications.

  相似文献   

996.
碳纤维的微晶结构是影响其性能的决定性因素,本论文采用广角X-射线衍射法研究了聚丙烯腈预氧纤维在碳化阶段中微晶结构的形成、生长与转变过程。研究结果表明:在1000℃以下,经预氧化反应形成的不连续多环芳香平面结构沿平行于纤维轴的方向堆积并逐渐靠近,形成类似于晶核的微晶结构生长中心,表现为类石墨片层间距的减小而晶粒增长缓慢;当温度高于1000℃时,晶粒的生长速度明显加快,形成三维有序的微晶结构;在温度高于1500℃的石墨化阶段,类石墨微晶结构进行重排,晶粒尺寸迅速增加。根据这一规律,可以通过控制晶核生成和晶粒生长速度的匹配,进行碳纤维的结构设计和调控。  相似文献   
997.
In this study, two‐phase hollow‐fiber liquid‐phase microextraction and three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6–200 and 0.9–200 μg L?1 and the limits of detection were 0.2 and 0.3 μg L?1 for oxazepam and lorazepam, respectively. For two‐phase hollow fiber liquid‐phase microextraction, the calibration curves were found to be linear in the range of 1–200 and 1.5–200 μg L?1 and the limits of detection were 0.3 and 0.5 μg L?1 for oxazepam and lorazepam, respectively. In a urine sample, for three‐phase hollow‐fiber‐based liquid‐phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2–4.5% and preconcentration factors in the range of 70–180 were obtained for oxazepam and lorazepam, respectively. Also for the two‐phase hollow‐fiber liquid‐phase microextraction, preconcentration factors in the range of 101–257 were obtained for oxazepam and lorazepam, respectively.  相似文献   
998.
建立了分析含有高分子辅料的凝胶类制剂中活性成分的中空纤维离心超滤前处理方法,并结合高效液相色谱法(HPLC)测定双氯芬酸钠凝胶含量。凝胶样品经中空纤维离心装置纯化,滤除样品中高分子辅料,采用HPLC法测定双氯芬酸钠凝胶的含量。经聚偏氟乙烯中空纤维膜对样品进行超滤处理,有效去除了高分子凝胶辅料的干扰。实验采用Phenomenexc C18柱,流动相为甲醇-0.1%乙酸溶液(体积比85∶15),检测波长为276nm。双氯芬酸钠在5.10~30.6μg·mL~(-1)范围内呈良好的线性关系(r=0.9998)。样品平均回收率为99.8%,相对标准偏差不大于1.6%。所建立的方法简便、快速,定量准确,可用于双氯芬酸钠凝胶的含量测定。  相似文献   
999.
首先以棉纤维为主要原材料,通过一步浸渍将聚乙烯醇-二氧化硅粒子(PVA-SiO_2)复合物涂覆在棉纤维表面;然后对其进行疏水改性,制得一种超疏水吸油材料。通过扫描电子显微镜(SEM)和水接触角(WCA)测试对改性纤维的表面结构及润湿性进行了分析表征。研究了PVA和SiO_2纳米粒子的质量分数对纤维吸油性能的影响,并评价了改性纤维的疏水性、润湿耐受性、吸油速率和重复使用性能。结果表明:棉纤维经过PVA-SiO_2复合物涂覆后具有稳定的超疏水性,吸油量比改性前显著提高,对正己烷、甲苯和氯仿的吸油量分别提高了47%、18.6%和26.2%。  相似文献   
1000.
This article describes the characterization of novel natural lignocellulosic bark fibers extracted from the stem of the Gossypium arboreum (cotton) plant. The G. arboreum stem fibers were treated with 5% (w/v) aqueous NaOH solution for different soaking times, and the Fourier transform infrared spectroscopy analysis was conducted to examine the chemical compounds of the raw and treated fibers. The cellulose content improved from 70.06 to 83.91% after the treatment. The X-ray diffraction results indicate that the crystalline index and size were enhanced. Thermogravimetric analysis was performed to study the thermal properties and found that the thermal stability was higher for the treated fibers. The tensile strength and modulus were increased for the alkaline-treated fibers compared to the untreated fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号