首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2289篇
  免费   455篇
  国内免费   109篇
化学   473篇
晶体学   15篇
力学   279篇
综合类   48篇
数学   574篇
物理学   1464篇
  2024年   6篇
  2023年   26篇
  2022年   46篇
  2021年   64篇
  2020年   87篇
  2019年   69篇
  2018年   63篇
  2017年   87篇
  2016年   87篇
  2015年   81篇
  2014年   137篇
  2013年   195篇
  2012年   155篇
  2011年   145篇
  2010年   107篇
  2009年   109篇
  2008年   138篇
  2007年   148篇
  2006年   158篇
  2005年   134篇
  2004年   129篇
  2003年   83篇
  2002年   86篇
  2001年   76篇
  2000年   85篇
  1999年   56篇
  1998年   48篇
  1997年   43篇
  1996年   34篇
  1995年   27篇
  1994年   30篇
  1993年   17篇
  1992年   26篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   12篇
  1987年   8篇
  1986年   1篇
  1985年   6篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1957年   3篇
排序方式: 共有2853条查询结果,搜索用时 15 毫秒
991.
Silver 3d x‐ray photoelectron spectroscopy (XPS) spectra were simulated with the Monte‐Carlo method using an effective energy‐loss function that was derived from a reflected electron energy‐loss spectroscopy (REELS) analysis based on an extended Landau approach. After confirming that Monte‐Carlo simulation based on the use of the effective energy‐loss function can successfully describe the experimental REELS spectrum and Ag 3d XPS spectrum, we applied Monte‐Carlo simulation to predict the angular distribution of Ag 3d x‐ray photoelectrons for different x‐ray incidence angles and different photoelectron take‐off angles. The experimental photoelectron emission microscope that we are constructing was confirmed as being close to the optimum configuration, in which the x‐ray incident angle as measured from the surface normal direction is 74° and the photoelectron take‐off angle is set normal to the surface. The depth distribution functions of the Ag 3d X‐ray photoelectrons for different energy windows suggest that the photoelectron emission microscope will exhibit greater surface sensitivity for narrower photoelectron energy windows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
992.
We use a variant of the focal point analysis to refine estimates of the relative energies of the four low‐energy torsional conformers of glycolaldehyde. The most stable form is the cis‐cis structure which enjoys a degree of H‐bonding from hydroxyl H to carbonyl O; here dihedral angles τ1 (O?C? C? O) and τ2 (C? C? O? H) both are zero. We optimized structures in both CCSD(T)/aug‐cc‐pVDZ and aug‐cc‐pVTZ; the structures agree within 0.01 Å for bond lengths and 1.0 degrees for valence angles, but the larger basis brings the rotational constants closer to experimental values. According to our extrapolation of CCSD(T) energies evaluated in basis sets ranging to aug‐cc‐pVQZ the trans‐trans form (180°, 180°) has a relative energy of 12.6 kJ/mol. The trans‐gauche conformer (160°, ±75°) is situated at 13.9 kJ/mol and the cis‐trans form (0°, 180°) at 18.9 kJ/mol. Values are corrected for zero point vibrational energy by MP2/aug‐cc‐pVTZ frequencies. Modeling the vibrational spectra is best accomplished by MP2/aug‐cc‐pVTZ with anharmonic corrections. We compute the Watsonian parameters that define the theoretical vibrational‐rotational spectra for the four stable conformers, to assist the search for these species in the interstellar medium. Six transition states are located by G4 and CBS‐QB3 methods as well as extrapolation using energies for structures optimized in CCSD(T)/aug‐cc‐pVDZ structures. We use two isodesmic reactions with two well‐established thermochemical computational schemes G4 and CBS‐QB3 to estimate energy enthalpy and Gibbs energy of formation as well as the entropy of the gas phase system. Our extrapolated electronic energies of species appearing in the isodesmic reactions produce independent values of thermodynamic quantities consistent with G4 and CBS‐QB3. © 2013 Wiley Periodicals, Inc.  相似文献   
993.
Zn(O,S) is a promising candidate to replace the commonly used CdS buffer layer for Cu(In,Ga)Se2 (CIGS) thin‐film solar cells due to its non‐toxicity and its potential to enhance the conversion efficiency of the CIGS solar cell. The composition of chemical bath deposited (CBD) and sputtered Zn(O,S) layers with thicknesses well below 100 nm was determined by sputtered neutral and secondary ion mass spectrometry (SNMS and SIMS). Despite numerous mass interferences of double‐charged atoms and dimers with single Zn, O and S isotopes, we developed an evaluation algorithm for quantification of SNMS depth profiles of Zn(O,S) layers. In particular, the superposition of double‐charged S and Zn atoms with O and S isotopes is accounted for numerically in the quantification procedure. For sputtered Zn(O,S) layers, the S/(S + O) atomic ratio and the vertical composition profile can be controlled by the O2 content in the gas flow and the substrate temperature during sputtering whereas for CBD Zn(O,S) the S/(S + O) ratio is constant around 0.7–0.8. A Cu‐depleted layer of about 5 nm on the CIGS surface after buffer deposition was observed for both preparation methods. With negative SIMS, we found more hydroxides and carbon residues in CBD Zn(O,S) as compared to sputtered layers. Best cell performance with sputtered Zn(O,S) layers was achieved for S/(S + O) ratios of 0.25–0.40, yielding efficiencies up to 13%. Our solar cells with CBD Zn(O,S) buffers exhibit higher efficiencies due to an improved open‐circuit voltage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
994.
A study of the corrosion resistance and electrochemical behavior of titanium anodes with active coatings prepared from mixed oxides iridium, ruthenium, and titanium (OIRTA) is continued. The dependence of the catalytic activity, selectivity, and corrosion resistance of these anodes with x mol % RuO2 + (30 ? x ) mol % IrO2 + 70 mol % TiO2 is studied in conditions of chlorine electrolysis on the ratio of concentrations of IrO2 and RuO2 in them at a constant loading of iridium in the coatings. It is established that the maximum corrosion resistance and selectivity is inherent in OIRTA with the RuO2 concentration close to 4 mol %. Partial curves, which describe the dependence of the rates of dissolution of iridium out of OIRTA and the evolution of chlorine and oxygen in them on the electrode potential, are obtained. The dependence of the rates of these processes on the solution pH, the concentration of NaCl in it, and the thickness of the active layer is studied. It is shown that the rate of dissolution of iridium out of OIRTA and the concentration of oxygen in chlorine at a constant potential increase approximately proportionally to the coating thickness, from whence it follows that the said processes proceed over the entire depth of the coating. An assumption is put forth that the chlorine evolution on OIRTA of the optimum composition, with a loading of iridium equal to 2.5 g m?2, at high anodic currents occurs in an outer-kinetics regime in the presence of diffusion limitations on the removal of chlorine out of the coating's depth.  相似文献   
995.
Layered (2D) artificial (or synthetic) antiferromagnets are fabricated by atom deposition techniques and possess very thin, nanometer-scale, magnetically ordered layers separated by a very thin nonmagnetic layer that antiferromagnetically couples the magnetic layers. Artificial antiferromagnets were crucial in the discovery of the giant magnetic effect (GMR), which had an incredible impact on the evolution of computer memory and its applications, and nucleated the dawn of spintronics (magnetoelectrics). The fundamental structural motif has been more recently achieved by using synthetic chemical methods that led to insulating artificial antiferromagnets. Examples of magnetically ordered layers that are antiferromagnetic coupled to form artificial antiferromagnets have been extended to isolated ions (0D) as well as extended chain (1D) and extended network 3D structures, and new phenomena and applications are anticipated as insulating antiferromagnets are more effective at propagating spin currents with respect to dielectric materials.  相似文献   
996.
Extending the conjugation of viologen by a planar thiazolo[5,4‐d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water‐soluble π‐conjugation extended viologen, 4,4′‐(thiazolo[5,4‐d]thiazole‐2,5‐diyl)bis(1‐(3‐(trimethylammonio)propyl)pyridin‐1‐ium) tetrachloride, [(NPr)2TTz]Cl4 , as a novel two‐electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4‐trimethylammonium‐TEMPO (NMe‐TEMPO) as catholyte, [(NPr)2TTz]Cl4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L?1. A demonstrated [(NPr)2TTz]Cl4 /NMe‐TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle.  相似文献   
997.
实验观察到双轴拉伸聚2,6-萘二甲酸乙二醇酯(PEN)的γ-辐射诱导我流子品种转变现象,检测到发生转变的剂量范围,在γ-辐射诱导陷阱变浅的实验基础上讨论了载流子品种转变的实质,研究了非晶及双拉PEN热驻极体在γ-辐射激励下电荷储存、迁移机理及解驻极效应。  相似文献   
998.
The local structure of oxidic Mo/TiO2 catalysts (0.5 to 13.5 wt.% Mo) has been studied using EXAFS and XANES. Both EXAFS and XANES results suggest that the Mo surface phase is octahedrally coordinated for all Mo loadings. The EXAFS results were also examined using principal component analysis (PCA) to determine the number of Mo species present on the Mo/TiO2 catalysts. Results from PCA of the Mo EXAFS spectra suggested the presence of three Mo species: two surface species and bulk MoO3.  相似文献   
999.
An indirect, compositional depth profiling of an inorganic multilayer system using a helium low temperature plasma (LTP) containing 0.2% (v/v) SF6 was evaluated. A model multilayer system consisting of four 10 nm layers of silicon separated by four 50 nm layers of tungsten was plasma‐etched for (10, 20, 30) s at substrate temperatures of (50, 75, and 100) °C to obtain crater walls with exposed silicon layers that were then visualized using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) to determine plasma‐etching conditions that produced optimum depth resolutions. At a substrate temperature of 100 °C and an etch time of 10 s, the FWHM of the second, third, and fourth Si layers were (6.4, 10.9, and 12.5) nm, respectively, while the 1/e decay lengths were (2.5, 3.7, and 3.9) nm, matching those obtained from a SIMS depth profile. Though artifacts remain that contribute to degraded depth resolutions, a few experimental parameters have been identified that could be used to reduce their contributions. Further studies are needed, but as long as the artifacts can be controlled, plasma etching was found to be an effective method for preparing samples for compositional depth profiling of both organic and inorganic films, which could pave the way for an indirect depth profile analysis of inorganic–organic hybrid structures that have recently evolved into innovative next‐generation materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1000.
Copolymers of 2‐(N,N‐dimethylamino)ethyl acrylate (DMAEA) and 2‐(tert‐Boc‐amino)ethyl acrylate (t BocAEA) are synthesized by reversible addition–fragmentation chain transfer polymerization in a controlled manner with defined molar masses and narrow molar masses distributions (Ð ≤ 1.17). Molar compositions of the P(DMAEA‐cot BocAEA) copolymers are assessed by means of 1H NMR. A complete screening in molar composition is studied from 0% of DMAEA to 100% of DMAEA. Reactivity ratios of both comonomers are determined by the extended Kelen–Tüdos method (r DMAEA = 0.81 and rt BocAEA = 0.99).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号