首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28336篇
  免费   3996篇
  国内免费   2066篇
化学   5183篇
晶体学   113篇
力学   5075篇
综合类   505篇
数学   10881篇
物理学   12641篇
  2024年   64篇
  2023年   301篇
  2022年   801篇
  2021年   805篇
  2020年   945篇
  2019年   833篇
  2018年   768篇
  2017年   1049篇
  2016年   1226篇
  2015年   916篇
  2014年   1515篇
  2013年   2202篇
  2012年   1581篇
  2011年   1874篇
  2010年   1594篇
  2009年   1868篇
  2008年   1731篇
  2007年   1764篇
  2006年   1492篇
  2005年   1353篇
  2004年   1248篇
  2003年   1035篇
  2002年   1003篇
  2001年   794篇
  2000年   757篇
  1999年   656篇
  1998年   597篇
  1997年   446篇
  1996年   385篇
  1995年   359篇
  1994年   333篇
  1993年   275篇
  1992年   253篇
  1991年   189篇
  1990年   170篇
  1989年   128篇
  1988年   126篇
  1987年   136篇
  1986年   110篇
  1985年   132篇
  1984年   133篇
  1983年   72篇
  1982年   97篇
  1981年   62篇
  1980年   30篇
  1979年   39篇
  1978年   30篇
  1977年   29篇
  1976年   18篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
91.
Organic semiconductor (OSC) crystals have great potential to be applied in many fields, as they can be flexibly designed according to the demands and show an outstanding device performance. However, OSCs with the capacity of solid-state crystallization (SSC) are developing too slowly to meet demands in productions and applications, due to their difficulties in molecular design and synthesis, unclear mechanism and high dependence on experimental conditions. In this work, in order to solve the problems, we synthesized an organic semiconductor capable of SSC at room temperature by adjusting the relationship between conjugated groups and functional groups. The thermodynamic and kinetic properties have been studied to discover the model of film SSC. Moreover, it can be purposefully controlled to prepare the high-quality crystals, and their corresponding organic electronic devices were further fabricated and discussed.  相似文献   
92.
In this paper a comparison is carried out between three correction methods for multigrid local mesh refinement in oceanic applications: FIC, LDC and the direct method (DM) proposed by Spall and Holland. This study is based on a nested primitive equation model developed by Laugier on the basis of the code OPA (LODYC). The external barotropic problem is solved using any of the three local grid correction algorithms yielding an interactive nested grid model. The non-linear elliptic equation for the barotropic streamfunction tendency is solved on two nested grids, called the global and the zoom grid, that interact between themselves. The zoom grid is entirely embedded within the global domain with a horizontal grid step ratio of 3:1. The computation on the global grid supplies the boundary conditions for the zoom grid region and the fine grid fields are used to correct the global coarse solution. The three local correction methods are tested on two problems relevant to oceanic circulation phenomena proposed by Spall and Holland: a barotropic modon and an anticyclonic vortex. The results show that the nesting technique is a very efficient way to solve these problems in terms of a gain in precision compared with the required CPU time. The two-domain model with local mesh refinement allows one both to manage effectively the open boundary conditions for the local grid and to correct the global solution thanks to the zoom solution. In the case of the modon propagation the three local correction methods provide approximately the same results. For the baroclinic vortex it appears that the two iterative methods are more efficient than the direct one.  相似文献   
93.
Chronic stress is the key factor contributing to the development of depressive symptoms. Chronic restraint stress (CRS) is well validated and is one of the most commonly used models to induce depressive-like behavior in rodents. The present study aimed to evaluate whether fluoxetine (FLU 5 mg/kg) and zinc (Zn 10mg/kg) given simultaneously induce a more pronounced antidepressant-like effect in the CRS model than both those compounds given alone. Behavioral assessment was performed using the tail suspension and splash tests (TST and ST, respectively). Furthermore, the effects of CRS, FLU and Zn given alone and combined treatment with FLU + Zn on the expression of proteins involved in the apoptotic, inflammatory, and epigenetic processes were evaluated in selected brain structures (prefrontal cortex, PFC; and hippocampus, Hp) using Western blot analysis or enzyme-linked immunosorbent assays (ELISA). The results obtained indicated that three hours (per day) of immobilization for 4 weeks induced prominent depressive symptoms that manifested as increased immobility time in the TST, as well as decreased number and grooming time in the ST. Behavioral changes induced by CRS were reversed by both FLU (5 and 10 mg/kg) or Zn (10 mg/kg). Zinc supplementation (10 mg/kg) slightly increases the effectiveness of FLU (5 mg/kg) in the TST. However, it significantly increased the activity of FLU in the ST compared to the effect induced by FLU and Zn alone. Biochemical studies revealed that neither CRS nor FLU and Zn given alone or in combined treatment alter the expression of proteins involved in apoptotic or inflammatory processes. CRS induced major alterations in histone deacetylase (HDAC) levels by increasing the level of HADC1 and decreasing the level of HADC4 in the PFC and Hp, decreasing the level of HADC6 in the PFC but increasing it in Hp. Interestingly, FLU + Zn treatment reversed CRS-induced changes in HDAC levels in the Hp, indicating that HDAC modulation is linked to FLU + Zn treatment and this effect is structure-specific.  相似文献   
94.
多孔介质(PM)发动机理想循环热力学分析   总被引:1,自引:0,他引:1  
本文论述了基于多孔介质燃烧技术的超绝热发动机的原理及其工作过程,建立了PM发动机的热力学模型,对 PM发动机内的PM回热循环进行热力学分析,列出了循环参数如压缩比、预胀比、预压比等对发动机效率、循环功的影响,确定了PM回热循环的两种极限状态。将PM回热循环与发动机的Otto循环、Diesel循环进行比较,结果表明: PM回热循环在保证效率的同时,可以大幅度提高循环功。  相似文献   
95.
With the increasing application of deep-learning-based generative models for de novo molecule design, the quantitative estimation of molecular synthetic accessibility (SA) has become a crucial factor for prioritizing the structures generated from generative models. It is also useful for helping in the prioritization of hit/lead compounds and guiding retrosynthesis analysis. In this study, based on the USPTO and Pistachio reaction datasets, a chemical reaction network was constructed for the identification of the shortest reaction paths (SRP) needed to synthesize compounds, and different SRP cut-offs were then used as the threshold to distinguish a organic compound as either an easy-to-synthesize (ES) or hard-to-synthesize (HS) class. Two synthesis accessibility models (DNN-ECFP model and graph-based CMPNN model) were built using deep learning/machine learning algorithms. Compared to other existing synthesis accessibility scoring schemes, such as SYBA, SCScore, and SAScore, our results show that CMPNN (ROC AUC: 0.791) performs better than SYBA (ROC AUC: 0.76), albeit marginally, and outperforms SAScore and SCScore. Our prediction models based on historical reaction knowledge could be a potential tool for estimating molecule SA.  相似文献   
96.
In the present study, the effect of vertical load, tire inflation pressure and soil moisture content on power loss in tire under controlled soil bin conditions were investigated. Also a finite element model of tire-soil interaction in order to achieve a suitable model for predicting power loss in tire was created. Increasing the vertical load on the tire had a noteworthy impact on increasing the tire contact volume with the soil, reducing the percentage of slip, and increasing the rolling resistance; although, reducing the load on the tire had the opposite effect. At a constant inflation pressure, by increasing the vertical load on the tire, the amount of power loss due to the rolling resistance and the total power loss in the tire increased. Increase in soil moisture content increased the power loss caused by slip. Increasing the inflation pressure at a constant vertical load, also increasing the soil moisture content, led to an increase in the power loss caused by rolling resistance, and increase total power loss. The obtained error for estimating power loss of rolling resistance and total power loss was satisfactory and confirmed the acceptability of the model for power loss estimation.  相似文献   
97.
Biophysical computational models are complementary to experiments and theories, providing powerful tools for the study of neurological diseases. The focus of this review is the dynamic modeling and control strategies of Parkinson's disease (PD). In previous studies, the development of parkinsonian network dynamics modeling has made great progress. Modeling mainly focuses on the cortex-thalamus-basal ganglia (CTBG) circuit and its sub-circuits, which helps to explore the dynamic behavior of the parkinsonian network, such as synchronization. Deep brain stimulation (DBS) is an effective strategy for the treatment of PD. At present, many studies are based on the side effects of the DBS. However, the translation from modeling results to clinical disease mitigation therapy still faces huge challenges. Here, we introduce the progress of DBS improvement. Its specific purpose is to develop novel DBS treatment methods, optimize the treatment effect of DBS for each patient, and focus on the study in closed-loop DBS. Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.  相似文献   
98.
A novel control volume finite element method with adaptive anisotropic unstructured meshes is presented for three-dimensional three-phase flows with interfacial tension. The numerical framework consists of a mixed control volume and finite element formulation with a new P1DG-P2 elements (linear discontinuous velocity between elements and quadratic continuous pressure between elements). A “volume of fluid” type method is used for the interface capturing, which is based on compressive control volume advection and second-order finite element methods. A force-balanced continuum surface force model is employed for the interfacial tension on unstructured meshes. The interfacial tension coefficient decomposition method is also used to deal with interfacial tension pairings between different phases. Numerical examples of benchmark tests and the dynamics of three-dimensional three-phase rising bubble, and droplet impact are presented. The results are compared with the analytical solutions and previously published experimental data, demonstrating the capability of the present method.  相似文献   
99.
In this paper, we propose an uncertainty quantification analysis, which is the continuation of a recent work performed in a deterministic framework. The fluid–structure system under consideration is the one experimentally studied in the sixties by Abramson, Kana, and Lindholm from the Southwest Research Institute under NASA contract. This coupled system is constituted of a linear acoustic liquid contained in an elastic tank that undergoes finite dynamical displacements, inducing geometrical nonlinear effects in the structure. The liquid has a free surface on which sloshing and capillarity effects are taken into account. The problem is expressed in terms of the acoustic pressure field in the fluid, of the displacement field of the elastic structure, and of the normal elevation field of the free surface. The nonlinear reduced-order model constructed in the recent work evoked above is reused for implementing the nonparametric probabilistic approach of uncertainties. The objective of this paper is to present a sensitivity analysis of this coupled fluid–structure system with respect to uncertainties and to use a classical statistical inverse problem for carrying out the experimental identification of the hyperparameter of the stochastic model. The analysis show a significant sensitivity of the displacement of the structure, of the acoustic pressure in the liquid, and of the free-surface elevation to uncertainties in both linear and geometrically nonlinear simulations.  相似文献   
100.
In this paper, the aeroelastic analyses of a rectangular cantilever plate of varying aspect ratio is presented. The classical plate theory has been selected as the structural model. The main point that distinguishes this study from previously reported research is employing Peters’ theory to model aerodynamic effect which is not straightforward. The Peters’ aerodynamic model was originally developed to provide lift and moment, which is only applicable to the structural model based on the beam theories. In this study, using the basic concept of the Peters’ aerodynamic model in addition to utilizing the Fourier series, the pressure distribution is derived, which makes Peters’ model applicable to structural models based on plate theory. This combination provides a much simpler state–space aeroelastic model for plates in comparison to the prevalent panel methods, which could lead to a significant reduction in computational time. In addition, the aeroelastic response of the plate with respect to changes in the structural model from the beam theory to the plate theory is evaluated. By using data from an experiment carried out at Duke University, the theoretical results are evaluated. Furthermore, the differences in structural models obtained from the plate and beam theories can be divided into two distinct parts, which are responsible for differences in bending and torsional behaviors of the structure, separately. This approach enables us to measure the effects of differences of each behavior separately, which could provide with a new insight into the problem. It has been determined that the flutter speeds obtained from the beam and plate aeroelastic models are little affected by the difference in bending behavior, but rather is mainly caused by the difference in torsional frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号