全文获取类型
收费全文 | 2875篇 |
免费 | 138篇 |
国内免费 | 581篇 |
专业分类
化学 | 3331篇 |
晶体学 | 9篇 |
力学 | 14篇 |
综合类 | 14篇 |
数学 | 3篇 |
物理学 | 223篇 |
出版年
2024年 | 4篇 |
2023年 | 18篇 |
2022年 | 39篇 |
2021年 | 46篇 |
2020年 | 73篇 |
2019年 | 69篇 |
2018年 | 61篇 |
2017年 | 93篇 |
2016年 | 97篇 |
2015年 | 82篇 |
2014年 | 110篇 |
2013年 | 297篇 |
2012年 | 127篇 |
2011年 | 147篇 |
2010年 | 139篇 |
2009年 | 159篇 |
2008年 | 174篇 |
2007年 | 190篇 |
2006年 | 202篇 |
2005年 | 189篇 |
2004年 | 173篇 |
2003年 | 150篇 |
2002年 | 125篇 |
2001年 | 99篇 |
2000年 | 113篇 |
1999年 | 95篇 |
1998年 | 67篇 |
1997年 | 56篇 |
1996年 | 73篇 |
1995年 | 70篇 |
1994年 | 64篇 |
1993年 | 53篇 |
1992年 | 51篇 |
1991年 | 19篇 |
1990年 | 16篇 |
1989年 | 9篇 |
1988年 | 5篇 |
1987年 | 8篇 |
1986年 | 2篇 |
1985年 | 5篇 |
1984年 | 7篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 5篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有3594条查询结果,搜索用时 9 毫秒
11.
Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments
Debby Husken Jan Feijen Reinoud J. Gaymans 《Journal of polymer science. Part A, Polymer chemistry》2007,45(19):4522-4535
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007 相似文献
12.
Hidenori Hanaoka Yuka Imamoto Takahiro Hino Tetsuya Kohno Kazunori Yanagi Yoshiaki Oda 《Journal of polymer science. Part A, Polymer chemistry》2007,45(16):3668-3676
Chromium catalysts combined with phosphorous‐bridged bisphenoxy ligands were found to be highly active for ethylene polymerization. The most efficient catalyst precursor among them, generated by combining bis[3‐tert‐butyl‐5‐methyl‐2‐hydroxyphenyl](phenyl)phosphine hydrochloride ( 1a ) and CrCl3(THF)3, was characterized. X‐ray analysis of (3‐tert‐butyl‐5‐methyl‐2‐phenoxy)(3‐tert‐butyl‐5‐methyl‐ 2‐hydroxyphenyl)(phenyl)phosphine bis(tetrahydrofuran)chromium dichloride ( 6 ), obtained by the reaction of 1a and CrCl3(THF)3 in the presence of NaH, revealed a unique structure in which one phenol moiety of the bisphenol did not coordinate to the chromium center. Complex 6 showed higher activities than those observed in the in situ catalyst system. Polyethylene of various molecular weights was obtained with differing activators. The highest activity (113.5 kg mmol (cat)?1 h?1) was observed when TIBA/TB was used as a cocatalyst. A medium molecular weight polymer with narrow molecular weight distribution (Mw = 128,700, Mw/Mn = 1.8) was obtained using a 6 ‐TIBA/B(C6F5)3 system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3668–3676, 2007 相似文献
13.
Katsuhiro Inomata Chieko Fukuda Kuniyoshi Hori Hideki Sugimoto Eiji Nakanishi 《Journal of Polymer Science.Polymer Physics》2007,45(2):129-137
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007 相似文献
14.
Hoang The Ban Kei Nishii Yasuo Tsunogae Takeshi Shiono 《Journal of polymer science. Part A, Polymer chemistry》2007,45(13):2765-2773
This article reports a synthetic method for a norbornene–ethylene–styrene (N‐E‐S) terpolymer, which has not been well investigated so far, via incorporation of styrene (S) into vinyl‐type norbornene–ethylene (N‐E) copolymers catalyzed by a substituted ansa‐fluorenylamidodimethyltitanium [Me2Si(3,6‐tBu2Flu)(tBuN)]TiMe2 catalyst ( I ) activated with a [Ph3C][B(C6F5)4]/Al(iBu)3 cocatalyst at room temperature in toluene. The resulting terpolymerization product contained the targeted N‐E‐S terpolymer and the contaminated homopolymers, which were then able to be completely removed by solvent fractionation techniques. While homopolystyrene was easily extracted by fractionation with methylethylketone as a soluble part, homopolyethylene and a trace amount of homopolynorbornene could be perfectly separated by fractionation with chloroform as insoluble parts. The detail characterizations of a chloroform‐soluble polymer with gel permeation chromatography, nuclear magnetic resonance, and differential scanning calorimetry analyses proved that it contained a true N‐E‐S terpolymer with long N‐E sequences incorporated with isolated or short styrene sequences. The homogeneity of the morphology together with a single glass transition temperature that proportionally decreased with the increase of the styrene contents indicated that the N‐E‐S terpolymer obtained in this work is a random polymer with an amorphous structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2765–2773, 2007 相似文献
15.
Matthew M. Malwitz Paul D. Butler Lionel Porcar Drew P. Angelette Gudrun Schmidt 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):3102-3112
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004 相似文献
16.
H. Hommel A. Touhami A. Halli A. P. LeGrand 《Journal of Polymer Science.Polymer Physics》1995,33(16):2189-2198
EPR spectroscopy of labeled poly(ethylene oxide) (PEO) grafted on silica has been used to characterize the conformation and local dynamics of the chains. Grafted molecules of MW 2000 with grafting ratios of 0.045, 0.057, 0.126, and 0.42 molecules/nm2 were in contact with benzene. The mobility of the label was compared with that observed for solution of PEO from very diluted to highly concentrated and even bulk PEO. Thus, the concentration inside the grafted layer could be evaluated and also the thickness, which evolves rather linearly with the grafting ratio. © 1995 John Wiley & Sons, Inc. 相似文献
17.
R. Riva J. Rieger R. Jrme PH. Lecomte 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):6015-6024
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006 相似文献
18.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006 相似文献
19.
Zhongfan Jia Qiang Fu Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(12):3836-3842
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006 相似文献
20.
The discolouration, that occurs in virgin poly(ethylene terephthalate) - PET during melt processing, was studied using various bulk and surface analytical techniques. Proton nuclear magnetic resonance (1H NMR) was used to study the bulk chemical changes occurring in the polymer during thermo-oxidative degradation. Chemical derivatisation with trifluoroacetic anhydride (TFAA) was used to label the hydroxyl groups introduced on the polymer surface by thermal oxidation.From the surface analysis studies using photoacoustic Fourier transform infrared spectroscopy (PA/FT-IR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and X-ray photoelectron spectroscopy (XPS) it was evident that colour formation starts initially with the hydroxylation of the terephthalic ring. Further, the formation of additional carbonyl functionalities and conjugated chromophoric systems complete the colour formation process. 相似文献