首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4270篇
  免费   699篇
  国内免费   610篇
化学   3529篇
晶体学   15篇
力学   60篇
综合类   15篇
数学   35篇
物理学   1925篇
  2024年   6篇
  2023年   27篇
  2022年   93篇
  2021年   113篇
  2020年   125篇
  2019年   121篇
  2018年   102篇
  2017年   146篇
  2016年   187篇
  2015年   206篇
  2014年   227篇
  2013年   351篇
  2012年   333篇
  2011年   314篇
  2010年   260篇
  2009年   327篇
  2008年   293篇
  2007年   287篇
  2006年   267篇
  2005年   214篇
  2004年   239篇
  2003年   196篇
  2002年   160篇
  2001年   134篇
  2000年   136篇
  1999年   110篇
  1998年   95篇
  1997年   73篇
  1996年   63篇
  1995年   48篇
  1994年   46篇
  1993年   45篇
  1992年   39篇
  1991年   33篇
  1990年   30篇
  1989年   13篇
  1988年   16篇
  1987年   8篇
  1986年   8篇
  1985年   13篇
  1984年   9篇
  1982年   11篇
  1981年   10篇
  1980年   4篇
  1979年   5篇
  1978年   10篇
  1977年   5篇
  1976年   8篇
  1975年   3篇
  1972年   4篇
排序方式: 共有5579条查询结果,搜索用时 15 毫秒
991.
992.
We report on the optical characterization of plasmonic metal nanostructures representing highly ordered interconnected hemispherical gold and silver shells that can be iteratively stripped from the same embossed templates (without template degradation) made from selectively etched anodized aluminum. By performing scanning high‐resolution confocal Raman microscopy of p‐aminothiophenol and Rhodamine 6G molecules homogeneously adsorbed to samples with different radii of shell curvature, we systematically investigate the applicability of the fabricated structures for surface‐enhanced Raman spectroscopy and correlate the results with linear reflection spectroscopy. We trace the origin of strong Raman signal enhancements (average relative enhancement of up to ~120) to electromagnetic hot‐spots located in sharp grooves and crevices at hemisphere shell junctions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
993.
Yeastolate or yeast extract, which are hydrolysates produced by autolysis of yeast, are often employed as a raw material in the media used for industrial mammalian cell culture. The source and quality of yeastolate can significantly affect cell growth and production; however, analysis of these complex biologically derived materials is not straightforward. The best current method, liquid chromatography–mass spectrometry (LC‐MS), is time‐consuming and requires extensive expertise. This study describes the use of surface‐enhanced Raman scattering (SERS) and fluorescence excitation–emission matrix (EEM) spectroscopy coupled with robust principal component analysis (ROBPCA) for the rapid and facile characterization and discrimination of yeast extracts in aqueous solution. SERS using silver colloids generates time‐dependent signals, where adenine is the strongest contributor, and the spectra are stable and reproducible (< ~3%) at 180 min after mixing. Combining this spectral behavior with chemometric methods enables SERS to be used in discriminating between different yeastolate sources, for assessing lot‐to‐lot variability, and, potentially, to monitor storage‐induced compositional changes. Fluorescence EEM combined with multiway ROBPCA also provides a rapid and inexpensive method for the discrimination of yeastolate, yielding results in terms of sample discrimination very similar to that obtained with SERS. However, the EEM data does not provide the same level of chemical information that is provided by the SERS. Thus, the combination of these two methodologies has the potential to be extremely useful in biopharmaceutical manufacturing, as well as for the rapid characterization and screening of biogenic hydrolysates from animal or plant sources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
994.
Complex concentration‐dependence of surface‐enhanced Raman scattering (SERS) and UV–Vis absorption of Ag‐nanoparticles (AgNPs) mixed with Gly has been observed. Surprisingly, with decreasing Gly concentration, a new band in UV–Vis absorption of AgNPs/Gly mixtures is found to red‐shift with increasing intensity, until a turning point at a critical concentration. Further diluting Gly, the new band blue‐shifts with decreasing intensity. Similarly, the SERS intensities of Gly bands at 615 and 905 cm–1 consistently increase with decreasing Gly concentrations, reaching maxima at the critical concentration. This agrees consistently with the variation in position and intensity of the new developing plasmon absorption band. Interestingly, transmission electron microscopy (TEM) revealed Gly‐induced modifications of AgNPs, including a reassembling and increasing aspect ratio with deceasing Gly concentration. The concentration‐dependent behavior of UV–Vis absorption, SERS, and TEM of AgNPs/Gly mixtures could be due to the complex nature of Gly‐AgNPs interaction depending on the molecular density, as supported by TEM images. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
995.
In this work, we propose a new electrochemical method to prepare surface‐enhanced Raman scattering (SERS)‐active silver substrates in nitric acid solutions. Experimental results indicate that the SERS intensity of adsorbed Rhodamine 6G (R6G) can be significantly increased, as compared with that of R6G adsorbed on a SERS‐active Ag substrate prepared by an electrochemical method in a chloride‐containing solution, which was generally employed in the literature. Moreover, the SERS of R6G on the newly developed substrate (prepared in a nitric acid solution) still performs well at a high temperature of 250 °C. However, the enhancement capability of the SERS‐active substrate prepared in a chloride‐containing solution is seriously destroyed at temperatures higher than 150 °C. Further investigations indicate that the oxidation states of roughened Ag substrates prepared in nitric acid solutions under different experiment conditions have less influence on the corresponding SERS performances. Instead, different surface morphologies of roughened Ag substrates and different contents of nitrogen‐containing dopping ions on the roughened Ag substrates demonstrate significant effects on the corresponding SERS performances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
996.
4‐Hydroxybenzoyl‐CoA (4‐HB‐CoA) thioesterase from Arthrobacter is the final enzyme catalyzing the hydrolysis of 4‐HB‐CoA to produce coenzyme A and 4‐hydroxybenzoic acid in the bacterial 4‐chlorobenzoate dehalogenation pathway. Using a mutation E73A that blocks catalysis, stable complexes of the enzyme and its substrate can be analyzed by Raman difference spectroscopy. Here we have used Raman difference spectroscopy, in the non‐resonance regime, to characterize 4‐HB‐CoA bound in the active site of the E73A thioesterase. In addition, we have characterized complexes of the wild‐type enzyme complexed with the unreactive substrate analog 4‐hydroxyphenacyl‐CoA (4‐HP‐CoA). Both sets of complexes show evidence for two forms of the ligand in the active site: one population has the 4‐hydroxy group protonated, 4‐OH; while the second has the group as the hydroxide, 4‐O. For bound 4‐HP‐CoA, X‐ray data show that glutamate 78 is close to the 4‐OH in the complex and it is likely that this is the proton acceptor for the 4‐OH proton. Although the pKa of the 4‐OH group on the free substrate in aqueous solution is 8.6, the relative populations of ionized and neutral 4‐HB‐CoA bound to E73A remain invariant between pH 7.3 and 9.8. The invariance with pH suggests that the 4‐OH and the ‐COO of E78 constitute a tightly coupled pair where their separate pKa ‘s lose their individual qualities. Narrow band profiles are seen in the CO double bond and C‐S regions, suggesting that the hydrolyzable thioester group is rigidly bound in the active site in a syn gauche conformation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
997.
Tip‐enhanced Raman scattering (TERS) spectroscopy is a promising technique for nanoscale chemical analysis. However, there are several challenges preventing widespread application of this technology, including reproducible fabrication of efficient TERS probes. These problems reflect a lack of clear understanding of the origins of, and the parameters influencing TERS. It is believed that the coating characteristics at the apex of the tip have a major effect on the near‐field optical enhancement and thus the TERS activity of a metalized probe. Here we show that the aspect ratio of the tip can play a significant role in the efficiency of TERS probes. We argue that the electrostatic field arising from the lightning‐rod effect has a substantial role in the observed TERS effect. This argument is supported by ‘edge‐enhanced Raman scattering’ which is shown for a noble metal film. Furthermore, it is reported that an associated tip‐surface‐enhanced Raman scattering effect can be achieved by using a TERS‐inactive metalized probe on a surface‐enhanced Raman spectroscopy‐inactive roughened surface. This observation can be explained by an interparticle enhancement of the electromagnetic field. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
We have examined the surface characteristics of Ag‐doped Au nanoparticles (below 5 mol% of Ag) by means of the surface‐enhanced Raman scattering (SERS) of 2,6‐dimethylphenylisocyanide (2,6‐DMPI) and 4‐nitrobenzenethiol (4‐NBT). When Ag was added to Au to form ∼35‐nm‐sized alloy nanoparticles, the surface plasmon resonance band was blue‐shifted linearly from 523 to 517 nm in proportion to the content of Ag up to 5%. In the SERS spectra of 2,6‐DMPI, the N‐C stretching peak also shifted almost linearly from 2184 to 2174 cm−1 when the Ag content was 5 mol% or less; the peak then remained the same as that of the pure Ag film. The potential variation of the SERS spectrum of 2,6‐DMPI in an electrochemical environment, as well as the effect of organic vapor, also showed a similar tendency. From the SERS of 4‐NBT, we confirmed the occurrence of a surface‐induced photoreaction converting 4‐NBT to 4‐aminobenzenethiol, when Ag was added to Au to form alloy nanoparticles. The photoreaction induction ability also increased linearly with the Ag content, reaching a plateau level at 5 mol% of Ag. All these observations suggest that the surface content of Ag should increase almost linearly as a function of the overall mole fraction of Ag and, once the Au/Ag nanoparticles reach 5 mol% of Ag, their surfaces are fully covered with Ag, showing the same surface characteristics of pure Ag nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
999.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
1000.
Electrochemical surface‐enhanced Raman spectroscopy (EC‐SERS), combined with cyclic voltammetry, and the density functional theoretical (DFT) method were used to investigate self‐assembled monolayer (SAM) adsorption and reduction processes. Here, we choose the system of interest, being thiolacetyl‐terminated 2‐phenylene ethynylene‐substituted anthraquinone molecule (2‐AQ) on gold electrodes in buffered aqueous and aprotic solutions. In the buffered aqueous solution, the results of cyclic voltammetry and EC‐SERS measurements, as well as DFT calculations, indicate that the adsorbed molecules pass through a two‐electron two‐proton reduction reaction with cathodic polarization. In particular, the latter two methods confirmed the structural changes of SAMs during the process of redox reaction, 2‐AQ + 2e + 2H+ → 2‐AQH2, where 2‐AQ and 2‐AQH2 are the oxidized and reduced forms, respectively. In aprotic solutions (acetonitile), a stepwise reaction mechanism was proposed on the basis of the results of EC‐SERS and DFT calculations. The first reduction peak should be a half reaction process 2‐AQ + e → 2‐AQ, where 2‐AQ is a single electron reduced form. Compared with that of 2‐AQ SAMs in the buffered aqueous solution, the results of EC‐SERS and DFT calculations in aprotic solution suggested that the solvent effect significantly influences the redox process of 2‐AQ in electrochemical interfaces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号