首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4714篇
  免费   486篇
  国内免费   303篇
化学   2894篇
晶体学   39篇
力学   450篇
综合类   99篇
数学   1233篇
物理学   788篇
  2024年   20篇
  2023年   80篇
  2022年   214篇
  2021年   222篇
  2020年   297篇
  2019年   216篇
  2018年   170篇
  2017年   197篇
  2016年   247篇
  2015年   202篇
  2014年   249篇
  2013年   326篇
  2012年   233篇
  2011年   260篇
  2010年   225篇
  2009年   237篇
  2008年   254篇
  2007年   314篇
  2006年   310篇
  2005年   246篇
  2004年   207篇
  2003年   131篇
  2002年   85篇
  2001年   71篇
  2000年   66篇
  1999年   69篇
  1998年   56篇
  1997年   40篇
  1996年   44篇
  1995年   38篇
  1994年   17篇
  1993年   16篇
  1992年   14篇
  1991年   13篇
  1990年   7篇
  1989年   6篇
  1988年   18篇
  1987年   2篇
  1986年   30篇
  1985年   6篇
  1984年   15篇
  1982年   3篇
  1981年   2篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有5503条查询结果,搜索用时 15 毫秒
31.
The design, the abilities and a characteristic application of an in-house made interface for combining thermogravimetry (TG) with mass spectrometry (MS) are presented. The TG-MS interface consists mainly of three co-axial tubes. The position of the intermediate tube was determined after calculation of the temperature profile at the TG furnace exit tube. The inner tube position was determined taking into consideration its protection against condensation of heavy molecules and the time delay for the transfer of the evolved gases. This interface allows either continuous sampling and transferring of the evolved gases from the TG to the MS or repetitive introduction of short sampling pulses of TG evolved gases to MS. The interface is capable of coupling various commercial instruments. In the present work two configurations of this interface are demonstrated. Finally an example of application of this interface on forest fuel pyrolysis is presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
32.
The aim of this work is the production of fibers from biodegradable polymers to obtain 3D scaffolds for tissue engineering of hard tissues. The scaffolds required for this highly demanding application need to have, as well as the biological and mechanical characteristics, a high degree of porosity with suitable dimensions for cell seeding and proliferation. Furthermore, the open cell porosity should have adequate interconnectivity for a continuous flow of nutrients and outflow of cell metabolic residues as well as to allow cell growth into confluent layers. Blends of corn starch, a natural biodegradable polymer, with other synthetic polymers (poly(ethylene vinyl alcohol), poly(epsilon-caprolactone), poly(lactic acid)) were selected for this work because of their good balance of properties, namely biocompatibility, processability and mechanical properties. Melt spinning was used to produce fibers from all the blends and 3D meshes from one of the starch-poly(lactic acid) blends. The experimental characterization included the evaluation of the tensile mechanical properties and thermal properties of the fibers and the compression stiffness, porosity and degradation behavior of the 3D meshes. Light microscopy picture of 3D meshes.  相似文献   
33.
In order to increase the biocompatibility and bioactivity of chitosan, hydroxyapatite had been in situ combined into chitosan scaffolds. The bioactivity of the composite scaffolds was studied by examining the apatite formed on the scaffolds by incubating in simulated body fluid and the activity of preosteoblasts cultured on them. The apatite layer was assessed using scanning electronic microscope (SEM), X-ray diffraction (XRD), Fourier-Transformed Infrared spectroscopy (FTIR) and weight measurement. Composite analysis showed that after incubation in simulated body fluid on both of the scaffolds carbonate hydroxyapatite was formed. With increasing nano-hydroxyapatite content in the composite, the quantity of the apatite formed on the scaffolds increased. Compared with pure chitosan, the composite with nano-hydroxyapatite could form apatite more readily during the biomimetic process, which suggests that the composite possessed better mineralization activity. Furthermore, preosteoblast cells cultured on the apatite-coated scaffolds showed different behavior. On the apatite-coated composite scaffolds cells presented better proliferation than on apatite-coated chitosan scaffolds. In addition, alkaline phosphatase activities of cells cultured on the scaffolds in conditioned medium were assessed. The cells on composite scaffolds showed a higher alkaline phosphatase activity which suggested a higher differentiation level. The results indicated that the addition of nano-hydroxyapatite improved the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds. On the other hand, that is to say composition of substrates could affect the apatite formation on them, and pre-loaded hydroxyapatite can enhance the apatite-coating. It will also be significant in preparation of apatite-coating polymer scaffolds for bone tissue engineering.  相似文献   
34.
A family of alkaline earth organosulfonate coordination solids is reported. In contrast to more typical crystal engineering approaches, these solids are sustained by the assembly of building blocks that are coordinatively adaptable rather than rigid in their bonding preferences. The ligand, 4,5-dihydroxybenzene-1,3-disulfonate, L, progressively evolves from a 0D, 1D, 2D, to a 3D microporous network with the Group II cations Mg(2+), Ca(2+), Sr(2+), and Ba(2+), (compounds 1-4), respectively. This trend in dimensionality can be explained by considering factors such as hard-soft acid-base principles and cation radii, a rationalization which follows salient crystal engineering principles. The selective gas sorption properties of the microporous 3D network [Ba(L)(H(2)O)].H(2)O, 4, with different gaseous guests are also presented.  相似文献   
35.
The research in thermal analysis and calorimetry, conducted by the author over the period 1964 to 1993, is summarised and concisely reviewed. The major investigations have focussed on thermal analysis studies of coordination compounds, particularly the metal dithiocarbamate complexes. A significant solution calorimetric study of some metal dithiocarbamate complexes has also been undertaken. DSC has been applied to determine the sublimation enthalpies of many metal dithiocarbamate and metal pentane-2,4-dionate complexes and solution calorimetry has been applied to study the thermochemistry of the latter group of complexes. Thermal analysis investigations of several inorganic molten salt systems have been initiated. Thermometric titrimetry has been applied to study metal-macrocyclic ligand systems in aqueous media and particularly those systems of environmental significance. Temperature calibration standards for TMA have been proposed and TMA has been applied to study the mechanical properties of several common inorganic compounds. DTA has been applied to study a wide variety of phenols and has subsequently been applied as an analytical technique to determine the components of solid state phenol mixtures. Thermometric titrimetry has been applied to determine the phenolic content of wines. A comprehensive thermal analysis study of Australian brown coal has been undertaken, involving the DSC determination of coal specific energy, a TG/DTA study of the coal pyrolysis and combustion processes and a TG/DTA and EGA study of the cation catalytic effect on the coal pyrolysis process. Thermal analysis and calorimetric techniques have been extensively publicised and promoted by the publication of specialist reviews, the presentation of symposia review papers and the oral presentation of short courses, particularly in the SE Asian region. This review essentially reveals the diversity of possible application of thermal analysis and calorimetric techniques and the primary significance of thermodynamic data in the fundamental rationalisation of chemical phenomena.  相似文献   
36.
Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.  相似文献   
37.
Stereochemically labile copper and zinc complexes with the N,N'-dimethylethylenediamine ligand (dmeda) have been shown to be promising precursors for the total spontaneous resolution of chiral covalent networks. (N,N')-[Cu(NO3)2(dmeda)]infinity crystallises as a conglomerate and yields either enantiopure (R,R)-1 or enantiopure (S,S)-1. A mixed-valence copper(I/II) complex, [{Cu(II)Br2(dmeda)}3(Cu(I)Br)2]infinity (2), which crystallises as a pair of interpenetrating chiral (10,3)-a nets, is formed from CuBr, CuBr2 and dmeda. One net contains ligands with solely (R,R) configuration and exhibits helices with (P) configuration while the other has solely (S,S)-dmeda ligands and gives rise to a net in which the helices have (M) configuration. The whole crystalline arrangement is racemic, because the interpenetrating chiral nets are of opposite handedness. With zinc chloride (R,S)-[ZnCl(dmeda)2]2[ZnCl4] (3) is obtained, which is a network structure, although not chiral. Total spontaneous resolution of stereochemically labile metal complexes formed from achiral or racemic building blocks is suggested as a viable route for the preparation of covalent chiral networks. Once the absolute structure of the compound has been determined by X-ray crystallography, a quantitative determination of the enantiomeric excess of the bulk product can be undertaken by means of solid-state CD spectroscopy.  相似文献   
38.
Based on the development prospect of cosmetics industry, the advantage of light industry characteristic and the foundation of applied chemistry in Jiangnan University, a systematic upgrading of applied chemistry was carried out through "emerging engineering education (3E)" project "upgrade and practice of chemistry-related majors of local and/or trade university responding to the social developments" supported by the Ministry of Education. On the basis of investigation and analysis, the orientation and training goal of applied chemistry were updated first, and then the curriculum system was determined and the curriculum construction is strengthened, so as to achieve more distinctive characteristics, more solid foundation and more comprehensive quality. In view of the new requirements of the 3E for talent training, some practices have been formed in the aspects of multi-disciplinary integration, multi-angle coordination and close integration to industry. Contributing the development of cosmetics industry and seizing the commanding point of science and technology from the perspective of talent training, will play a unique role in human social progress.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号