首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   159篇
  国内免费   128篇
化学   842篇
晶体学   8篇
力学   55篇
综合类   8篇
数学   14篇
物理学   398篇
  2024年   2篇
  2023年   14篇
  2022年   32篇
  2021年   35篇
  2020年   60篇
  2019年   36篇
  2018年   49篇
  2017年   40篇
  2016年   50篇
  2015年   52篇
  2014年   48篇
  2013年   75篇
  2012年   59篇
  2011年   77篇
  2010年   50篇
  2009年   34篇
  2008年   57篇
  2007年   74篇
  2006年   63篇
  2005年   55篇
  2004年   49篇
  2003年   47篇
  2002年   35篇
  2001年   33篇
  2000年   40篇
  1999年   22篇
  1998年   28篇
  1997年   24篇
  1996年   15篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1987年   1篇
  1986年   6篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
排序方式: 共有1325条查询结果,搜索用时 10 毫秒
71.
Developing Na metal anodes that can be deeply cycled with high efficiency for a long time is a prerequisite for rechargeable Na metal batteries to be practically useful despite their notable advantages in theoretical energy density and potential low cost. Their high chemical reactivity with the electrolyte and tendency for dendrite formation are two major issues limiting the reversibility of Na metal electrodes. In this work, we introduce for the first time potassium bis(trifluoromethylsulfonyl)imide (KTFSI) as a bifunctional electrolyte additive to stabilize Na metal electrodes, in which the TFSI? anions decompose into lithium nitride and oxynitrides to render a desirable solid electrolyte interphase layer while the K+ cations preferentially adsorb onto Na protrusions and provide electrostatic shielding to suppress dendritic deposition. Through the cooperation of the cations and anions, we have realized Na metal electrodes that can be deeply cycled at a capacity of 10 mAh cm?2 for hundreds of hours.  相似文献   
72.
建立了99种禁限用兽药的一步式提取净化体系,并通过高效液相色谱-四极杆/静电场轨道阱高分辨质谱(UHPLC-Q-Orbitrap HRMS)对其效果进行了评价。该提取净化体系基于载体辅助液液萃取技术,通过一次性前处理,完成常见的理化性质差异很大的8大类共计99种兽药残留的提取、净化工作,同时结合四极杆静电场轨道阱高分辨质谱实现了99种兽药残留的一步式多残留筛查。采用此体系对样品禁限用兽药进行测定分析,结果表明,该方法对液态乳、猪肉、鱼类等食品基质具有较强的适用性,检测的99种兽药线性范围为0.001~0.1 μg/mL,定量限为0.5~20.0 μg/kg,加标回收率为60%~120%,相对标准偏差小于15%。该方法的前处理和仪器分析过程对不同理化性质的化合物的兼容性强,检测效率高,可操作性强,检出限能满足所有受试的目标物,并且大大降低了检测成本。  相似文献   
73.
吴中涛  张蕾  邵百旗  刘凯 《应用化学》2018,35(2):123-128
生物固体大分子诸如核酸、蛋白和病毒颗粒,因其尺寸超出了分子间作用力的范围,升温之后会导致它们降解而无法形成生物大分子的液体形态。 因此,发展新型的合成和制备策略,实现无溶剂包覆的生物大分子的流体态及其应用,是一个崭新的研究领域。 结合我们前期工作,简要介绍了核酸、蛋白流体(液晶态和液体态)材料的制备及性质。 借助静电力自组装,上述生物大分子能够与带有相反电荷的表面活性剂结合,形成热致液晶材料,其热致液晶性质使得生物分子具有长程有序性和流动性,在此基础上,可以探索生物大分子在无水环境下的技术应用。  相似文献   
74.
Comparative molecular similarity indices analysis (CoMSIA), a three-dimensional quantitative structure activity relationship (3D QSAR) paradigm, was used to examine the correlations between the calculated physicochemical properties and the in vitro activities (3'-processing and 3'-strand transfer inhibition) of a series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors. The training set consisted of 34 molecules from five structurally diverse classes: salicylpyrazolinones, dioxepinones, coumarins, quinones, and benzoic hydrazides. The data set was aligned using extrema of molecular electrostatic potentials (MEPs). The predictive ability of the resultant model was evaluated using a test set comprised of 7 molecules belonging to a different structural class of thiazepinediones. A CoMSIA model using an MEP-based alignment showed considerable internal as well external predictive ability (r2(cv) = 0.821, r2(pred) = 0.608 for 3'-processing; and r2(cv) = 0.759, r2(pred.) = 0.660 for 3'-strand transfer).  相似文献   
75.
The assembly of alternating DNA and positively charged poly‐(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer‐by‐layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly‐(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real‐time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (kobs = (1.28 ± 0.08) × 10?2s?1).  相似文献   
76.
Interactions between carbonyl groups are prevalent in protein structures. Earlier investigations identified dominant electrostatic dipolar interactions, while others implicated lone pair n→π* orbital delocalisation. Here these observations are reconciled. A combined experimental and computational approach confirmed the dominance of electrostatic interactions in a new series of synthetic molecular balances, while also highlighting the distance-dependent observation of inductive polarisation manifested by n→π* orbital delocalisation. Computational fiSAPT energy decomposition and natural bonding orbital analyses correlated with experimental data to reveal the contexts in which short-range inductive polarisation augment electrostatic dipolar interactions. Thus, we provide a framework for reconciling the context dependency of the dominance of electrostatic interactions and the occurrence of n→π* orbital delocalisation in C=O⋅⋅⋅C=O interactions.  相似文献   
77.
It is common knowledge that pure alginate hydrogel is more likely to have weak mechanical strength, a lack of cell recognition sites, extensive swelling and uncontrolled degradation, and thus be unable to satisfy the demands of the ideal scaffold. To address these problems, we attempted to fabricate alginate/bacterial cellulose nanocrystals-chitosan-gelatin (Alg/BCNs-CS-GT) composite scaffolds using the combined method involving the incorporation of BCNs in the alginate matrix, internal gelation through the hydroxyapatite-d-glucono-δ-lactone (HAP-GDL) complex, and layer-by-layer (LBL) electrostatic assembly of polyelectrolytes. Meanwhile, the effect of various contents of BCNs on the scaffold morphology, porosity, mechanical properties, and swelling and degradation behavior was investigated. The experimental results showed that the fabricated Alg/BCNs-CS-GT composite scaffolds exhibited regular 3D morphologies and well-developed pore structures. With the increase in BCNs content, the pore size of Alg/BCNs-CS-GT composite scaffolds was gradually reduced from 200 μm to 70 μm. Furthermore, BCNs were fully embedded in the alginate matrix through the intermolecular hydrogen bond with alginate. Moreover, the addition of BCNs could effectively control the swelling and biodegradation of the Alg/BCNs-CS-GT composite scaffolds. Furthermore, the in vitro cytotoxicity studies indicated that the porous fiber network of BCNs could fully mimic the extracellular matrix structure, which promoted the adhesion and spreading of MG63 cells and MC3T3-E1 cells on the Alg/BCNs-CS-GT composite scaffolds. In addition, these cells could grow in the 3D-porous structure of composite scaffolds, which exhibited good proliferative viability. Based on the effect of BCNs on the cytocompatibility of composite scaffolds, the optimum BCNs content for the Alg/BCNs-CS-GT composite scaffolds was 0.2% (w/v). On the basis of good merits, such as regular 3D morphology, well-developed pore structure, controlled swelling and biodegradation behavior, and good cytocompatibility, the Alg/BCNs-CS-GT composite scaffolds may exhibit great potential as the ideal scaffold in the bone tissue engineering field.  相似文献   
78.
79.
A numerical model of the negative DC corona plasma along a thin wire in dry air is presented. The electron number density and electric field are determined from solution of the one-dimensional coupled continuity equations of charge carriers and Maxwell's equation. The electron kinetic energy distribution is determined from the spatially homogeneous Boltzmann equation. A parametric study is conducted to examine the effects of linear current density (0.1–100 A per cm of wire length), wire radius (10–1000 m), and air temperature (293–800 K) on the distribution of electrons and the Townsend second ionization coefficient. The results are compared to those previously determined for the positive corona discharge. In the negative corona, energetic electrons are present beyond the ionization boundary and the number of electrons is an order of magnitude greater than in the positive corona. The number of electrons increases with increasing gas temperature. The electron energy distribution does not depend on discharge polarity.  相似文献   
80.
Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK minimizer) is efficient and does not depend on the initial assigned values, and that the residual is acceptable when the distance to the model surface is close to, or larger than, the Debye length. We illustrate applications of DiSCO's model-building procedure to chromatin folding and supercoiled DNA bound to Hin and Fis proteins. DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale models are appropriate, to yield a resolution between the all-atom representative and the polymer level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号