首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9123篇
  免费   1165篇
  国内免费   890篇
化学   4242篇
晶体学   214篇
力学   2463篇
综合类   166篇
数学   1717篇
物理学   2376篇
  2024年   28篇
  2023年   100篇
  2022年   250篇
  2021年   253篇
  2020年   349篇
  2019年   255篇
  2018年   256篇
  2017年   331篇
  2016年   409篇
  2015年   347篇
  2014年   362篇
  2013年   788篇
  2012年   449篇
  2011年   454篇
  2010年   407篇
  2009年   412篇
  2008年   447篇
  2007年   470篇
  2006年   528篇
  2005年   485篇
  2004年   438篇
  2003年   429篇
  2002年   336篇
  2001年   288篇
  2000年   314篇
  1999年   280篇
  1998年   232篇
  1997年   191篇
  1996年   215篇
  1995年   182篇
  1994年   145篇
  1993年   134篇
  1992年   110篇
  1991年   81篇
  1990年   83篇
  1989年   44篇
  1988年   58篇
  1987年   37篇
  1986年   26篇
  1985年   33篇
  1984年   33篇
  1983年   10篇
  1982年   31篇
  1981年   17篇
  1980年   5篇
  1978年   8篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1957年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The crystallization of poly(ethylene terephthalate) under uniaxial tensile strain at different extension rates was investigated with optical polarimetry in a temperature range between the glass-transition temperature and the quiescent crystallization temperature. The evolution of the optical properties of the polymer, including the turbidity, birefringence, and dichroism, were monitored simultaneously with the mechanical parameters. To complete the semicrystalline microstructure characterization of the polymer under strain, an online wide-angle X-ray diffraction (WAXD) technique was used in separate experiments, which were performed under the same thermomechanical conditions. For real-time measurements, a high-energy synchrotron radiation source was used. The optical properties provided information about both the crystalline and amorphous phases, whereas the WAXD patterns essentially gave information about the crystalline phase. The two experimental techniques were then used in a complementary way to characterize the semicrystalline microstructure. Significant deviations from the stress-optical rule were found. This was attributed to both transient effects and the appearance of crystallites, which consisted of highly oriented molecular segments that could contribute to the optical anisotropy but not necessarily to the stress. The behavior of the optical dichroism was found to be qualitatively different from that of the birefringence. The latter monotonically increased with the strain, whereas the former first increased with the strain, passed through a maximum, and then decreased to a steady-state value. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1915–1927, 2004  相似文献   
12.
For properly chosen elastomer compounds, thermorheological characterization is combined with an examination of the variation of the wet sliding friction with temperature. A conceptual argument leads to the assumption that the wet sliding friction should maximize at the energy dissipation peak associated with the dynamic softening transition at a characteristic frequency determined by the sliding speed and the effective smallest surface asperity scale. The dynamic softening transition is characterized with the peak in tan δ/Gn, where tan δ is the loss tangent, G′ is the elastic modulus, and n is a constant between 0 and 1. The William–Landel–Ferry transform is uncritically applied for extrapolating the position of the peak in tan δ/Gn at high frequencies. Even based on the criterion of tan δ, the results obtained on a concrete surface indicate that the effective smallest asperity scale is of order of 100 μm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2467–2478, 2004  相似文献   
13.
The structure, morphology, and isothermal and nonisothermal crystallization of isotactic polypropylene/low‐molecular‐mass hydrocarbon resin blends (iPP/HR) (up to 20% in weight of HR) have been studied, using optical and electron microscopy, wide‐ and small‐angle X‐ray and differential scanning calorimetry. New structures and morphologies can be activated, using appropriate preparation and crystallization conditions and blend composition. For every composition and crystallization condition, iPP crystallizes in α‐form, with a spherulitic morphology. The size of iPP spherulites increases with resin content, whereas the long period decreases. In the range of crystallization temperatures investigated, HR modifies the birefringence of iPP spherulites, favoring the formation of radial lamellae and changing the ratio between tangential and radial lamellae. Spherulitic radial growth rates, overall crystallization rates, and melting temperatures are strongly affected by resin, monotonically decreasing with resin content. This confirms miscibility in the melt between the two components of the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3368–3379, 2004  相似文献   
14.
ε‐caprolactone was polymerized in the presence of neat montmorillonite or organomontmorillonites to obtain a variety of poly(ε‐caprolactone) (PCL)‐based systems loaded with 10 wt % of the silicates. The materials were thoroughly investigated by different X‐ray scattering techniques to determine factors affecting structure of the systems. For one of the nanocomposites it was found that varying the temperature in the range corresponding to crystallization of PCL causes reversible changes in the interlayer distance of the organoclay. Extensive experimental and literature studies on this phenomenon provided clues indicating that this effect might be a result of two‐dimensional ordering of PCL chains inside the galleries of the silicate. Small angle X‐ray scattering and wide angle X‐ray scattering investigation of filaments oriented above melting point of PCL revealed that polymer lamellae were oriented perpendicularly to particles of unmodified silicate, while in PCL/organoclay systems they were found parallel to clay tactoids. Calorimetric and microscopic studies shown that clay particles are effective nucleating agents. In the nanocomposites, PCL crystallized 20‐fold faster than in the neat polymer. The crystallization rate in nanocomposites was also significantly higher than in microcomposite. Further research provided an insight how the presence of the filler affects crystalline fraction and spherulitic structure of the polymer matrix in the investigated systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2350–2367, 2007  相似文献   
15.
Poly(3‐hydroxybutyrate) (PHB)/layered double hydroxides (LDHs) nanocomposites were prepared by mixing PHB and poly(ethylene glycol) phosphonates (PEOPAs)‐modified LDH (PMLDH) in chloroform solution. Both X‐ray diffraction data and TEM micrographs of PHB/PMLDH nanocomposites indicate that the PMLDHs are randomly dispersed and exfoliated into the PHB matrix. In this study, the effect of PMLDH on the isothermal crystallization behavior of PHB was investigated using a differential scanning calorimeter (DSC) and polarized optical microscopy. Isothermal crystallization results of PHB/PMLDH nanocomposites show that the addition of 2 wt % PMLDH into PHB induced more heterogeneous nucleation in the crystallization significantly increasing the crystallization rate and reducing their activation energy. By adding more PMLDH into the PHB probably causes more steric hindrance of the diffusion of PHB, reducing the transportation ability of polymer chains during crystallization, thus increasing the activation energy. The correlation among crystallization kinetics, melting behavior and crystalline structure of PHB/PMLDH nanocomposites can also be discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3337–3347, 2006  相似文献   
16.
The main transitions of cellulose fatty esters with different degrees of substitution (DSs) were investigated with dynamic mechanical thermal analysis. Two distinct main relaxations were observed in partially substituted cellulose esters (PSCEs). They were attributed to the glass‐transition temperature and to the chain local motion of the aliphatic substituents. The temperatures of both transitions decreased when DS or the number of carbon atoms (n) of the acyl substituent increased. Conversely, all the transitions of fully substituted cellulose esters occurred within a narrow temperature range, and they did not vary significantly with n. This phenomenon was explained by the formation of a crystalline phase of the fatty substituents. The presence of few residual OH groups in PSCEs was responsible for a large increase in the storage bending modulus, and it eliminated the effect of n on damping. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 281–288, 2003  相似文献   
17.
The effects of the blend ratio and initiating system on the viscoelastic properties of nanostructured natural rubber/polystyrene‐based interpenetrating polymer networks (IPNs) were investigated in the temperature range of ?80 to 150 °C. The studies were carried out at different frequencies (100, 50, 10, 1, and 0.1 Hz), and their effects on the damping and storage and loss moduli were analyzed. In all cases, tan δ and the storage and loss moduli showed two distinct transitions corresponding to natural rubber and polystyrene phases, which indicated that the system was not miscible on the molecular level. However, a slight inward shift was observed in the IPNs, with respect to the glass‐transition temperatures (Tg's) of the virgin polymers, showing a certain degree of miscibility or intermixing between the two phases. When the frequency increased from 0.1 to 100 Hz, the Tg values showed a positive shift in all cases. In a comparison of the three initiating systems (dicumyl peroxide, benzoyl peroxide, and azobisisobutyronitrile), the dicumyl peroxide system showed the highest modulus. The morphology of the IPNs was analyzed with transmission electron microscopy. The micrographs indicated that the system was nanostructured. An attempt was made to relate the viscoelastic behavior to the morphology of the IPNs. Various models, such as the series, parallel, Halpin–Tsai, Kerner, Coran, Takayanagi, and Davies models, were used to model the viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by group contribution analysis; this showed that the damping was influenced by the phase morphology, dual‐phase continuity, and crosslinking of the phases. Finally, the homogeneity of the system was further evaluated with Cole–Cole analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1680–1696, 2003  相似文献   
18.
In this work, the melting behaviors of nonisothermally and isothermally melt‐crystallized poly(L ‐lactic acid) (PLLA) from the melt were investigated with differential scanning calorimetry (DSC) and temperature‐modulated differential scanning calorimetry (TMDSC). The isothermal melt crystallizations of PLLA at a temperature in the range of 100–110 °C for 120 min or at 110 °C for a time in the range of 10–180 min appeared to exhibit double melting peaks in the DSC heating curves of 10 °C/min. TMDSC analysis revealed that the melting–recrystallization mechanism dominated the formation of the double melting peaks in PLLA samples following melt crystallizations at 110 °C for a shorter time (≤30 min) or at a lower temperature (100, 103, or 105 °C) for 120 min, whereas the double lamellar thickness model dominated the formation of the double melting peaks in those PLLA samples crystallized at a higher temperature (108 or 110 °C) for 120 min or at 110 °C for a longer time (≥45 min). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 466–474, 2007  相似文献   
19.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of N‐isopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   
20.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号