首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   106篇
  国内免费   39篇
化学   243篇
晶体学   5篇
力学   116篇
综合类   1篇
数学   13篇
物理学   259篇
  2024年   2篇
  2023年   9篇
  2022年   26篇
  2021年   48篇
  2020年   32篇
  2019年   20篇
  2018年   18篇
  2017年   37篇
  2016年   42篇
  2015年   37篇
  2014年   30篇
  2013年   69篇
  2012年   24篇
  2011年   30篇
  2010年   22篇
  2009年   27篇
  2008年   16篇
  2007年   20篇
  2006年   21篇
  2005年   12篇
  2004年   14篇
  2003年   16篇
  2002年   9篇
  2001年   7篇
  2000年   10篇
  1999年   4篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有637条查询结果,搜索用时 15 毫秒
81.
以制备空心玻璃微球的前体溶胶和硅油为原料,采用实验观测和数值模拟的方法,对T型微通道内溶胶乳液形成过程进行研究。基于液滴的受力分析,建立了液滴形成过程的数学模型,探讨了液滴大小的变化规律。研究结果表明:对于给定的物料体系和T型微通道,通过改变两相流量可以有效地控制液滴尺寸;在相同的分散相流量条件下,增大连续相流量可以减小液滴尺寸,但连续相流量大到一定程度后,这种效果逐渐减弱;在给定的连续相流量条件下,分散相流量越大,液滴直径越大;利用数学模型计算出的液滴直径与实验值偏差在10%左右。根据模拟结果和摄像分析,液滴产生过程经历了静态长大和缩颈剥离两个主要阶段。  相似文献   
82.
马坤全  刘静 《物理》2007,36(04):295-300
纳米流体近年来成为多个领域内的研究热点,特别是在流体物性测试、机理分析及新的应用上均取得长足进展.文章以该方向上最新完成的几类富有启发性的工作,如纳米流体热管、基于纳米液滴的纳米流体、纳米金属流体及借助于纳米颗粒控制纳米流体流动等进展予以剖析,归纳出了其中有待解决的一些重要科学问题,并指出一些可能的新应用.  相似文献   
83.
A 3D icing simulation code is developed in the open-source CFD toolbox OpenFOAM. A hybrid Cartesian/body-fitted meshing method is used to generate high-quality meshes around complex ice shapes. Steady-state 3D Reynolds-averaged Navier-Stokes (RANS) equations are solved to provide the ensemble-averaged flow around the airfoil. Considering the multi-scale nature of droplet size distribution, and more importantly, to represent the less uniform nature of the Super-cooled Large Droplets (SLD), two droplet tracking methods are realized: the Eulerian method is used to track the small-size droplets (below 50 μm) for the sake of efficiency; the Lagrangian method with random sampling is used to track the large droplets (above 50 μm); the heat transfer of the surface overflow is solved on a virtual surface mesh; the ice accumulation is estimated via the Myers model; finally, the final ice shape is predicted by time marching. Limited by the availability of experimental data, validations are performed on 3D simulations of 2D geometries using the Eulerian and Lagrangian methods, respectively. The code proves to be feasible and accurate enough in predicting ice shapes. Finally, an icing simulation result of the M6 wing is presented to illustrate the full 3D capability.  相似文献   
84.
Benzophenone derivatives exhibit not only biological activity but also act as photo initiator and UV blocker. We carried out experimental and theoretical thermochemical studies of hydroxy- and methoxy-substituted benzophenones. Standard molar enthalpies of vaporisation were obtained from the temperature dependence of vapour pressures measured by the transpiration method. The thermodynamic data on phase transitions available in the literature (crystal–gas, crystal–liquid, and liquid–gas) were also collected and evaluated. High-level quantum chemical methods G3MP2 and G4 were used to estimate the standard molar enthalpies of formation of substituted benzophenones in the gas phase and establish agreement between experimental and theoretical results. The application of the “centrepiece” group-contribution approach to hydroxy- and methoxy-substituted benzophenones was demonstrated. A quantitative assessment of the hydrogen bond was carried out using various approaches based on experimental data and quantum chemical calculations.  相似文献   
85.
基于VirtualLab虚拟仿真软件建立了粒径在几十到几百微米内不同大小和形状的气泡模型。对其在平面光照射下的散射进行了仿真模拟,得到了气泡的前向、后向光散射特征分布,将结果与水粒的光散射特征进行比较分析,发现:同一气泡前向散射远大于后向散射,但两者拥有十分相近的变化趋势。光源和气泡大小影响气泡远场散射幅值的大小、振荡频率、角宽度及次极大与主极大的比值。气泡结构的对称性影响着气泡远场散射的对称性。气泡与水粒的远场散射特性既联系又区别。该研究的结果可以为气泡的分析检测提供了一定的理论依据。  相似文献   
86.
油水两相分散流是油水混输管道常见的流型之一,液滴是油水分散流的主要特征,液滴在油水两相管路中受到湍流惯性力、剪切力、界面张力、黏性力等多种力的作用而发生聚结和破裂,从而形成不同的液滴粒径及其分布。本研究采用高速摄像和显微照相两种方法研究了水平管中油水分散流的液滴粒径随混合流量、温度和含油率等参数的变化规律,并利用三种概率分布函数研究了液滴粒径的分布特性。研究结果表明:分散相液滴的Sauter平均直径随混合流量的增加而逐渐减小、随温度升高而逐渐增大、随含油率的增大而增大;液滴粒径的分布规律与Log-Normal和Frechet概率分布函数符合较好。  相似文献   
87.
Pattern dynamics plays a fundamental role in biological functions from cell to organ in living systems, and the appearance of rotating waves can lead to pathological situations. Basic dynamics of rotating waves of contraction-relaxation activity under local perturbation is studied in a newly developed protoplasmic droplet of the Physarum plasmodium. A light pulse is applied by irradiating circularly a quarter of the droplet showing a single rotating wave. The oscillation pattern changes abruptly only when the irradiation is applied at a part of the droplet near the maximal contraction. The abrupt changes are as follows: the rotating wave disappears or is displaced when the irradiation area is very close to the center of the rotating wave, while new rotating waves are created when the irradiation area is far from the center of the rotating wave. These results support the hypothesis that the phase response curve has a discontinuous change (type 0 resetting) from delay to advance around the maximal contraction. The significance of the results is discussed in relation to “vulnerability” in excitable media and biological systems in general.  相似文献   
88.
Experiments on the combustion of large n-heptane droplets, performed by the National Aeronautics and Space Administration in the International Space Station, revealed a second stage of continued quasi-steady burning, supported by low-temperature chemistry, that follows radiative extinction of the first stage of burning, which is supported by normal hot-flame chemistry. The second stage of combustion experienced diffusive extinction, after which a large vapour cloud was observed to form around the droplet. In the present work, a 770-step reduced chemical-kinetic mechanism and a new 62-step skeletal chemical-kinetic mechanism, developed as an extension of an earlier 56-step mechanism, are employed to calculate the droplet burning rates, flame structures, and extinction diameters for this cool-flame regime. The calculations are performed for quasi-steady burning with the mixture fraction as the independent variable, which is then related to the physical variables of droplet combustion. The predictions with the new mechanism, which agree well with measured autoignition times, reveal that, in decreasing order of abundance, H2O, CO, H2O2, CH2O, and C2H4 are the principal reaction products during the low-temperature stage and that, during this stage, there is substantial leakage of n-heptane and O2 through the flame, and very little production of CO2 with no soot in the mechanism. The fuel leakage has been suggested to be the source of the observed vapour cloud that forms after flame extinction. While the new skeletal chemical-kinetic mechanism facilitates understanding of the chemical kinetics and predicts ignition times well, its predicted droplet diameters at extinction are appreciably larger than observed experimentally, but predictions with the 770-step reduced chemical-kinetic mechanism are in reasonably good agreement with experiment. The computations show how the key ketohydroperoxide compounds control the diffusion-flame structure and its extinction.  相似文献   
89.
Micro‐structure patterned substrates attract our attention due to the special and programmable wettabilities. The interaction between the liquid and micro/nano structures gives rise to controllable spreading and thus evaporation. For exploration of the application versatility, the introduction of nanoparticles in liquid droplet results in interaction among particles, liquid and microstructures. In addition, temperature of the substrates strongly affects the spreading of the contact line and the evaporative property. The evaporation of sessile droplets of nanofluids on a micro‐grooved solid surface is investigated in terms of liquid and surface properties. The patterned nickel surface used in the experiments is designed and fabricated with circular and rectangular shaped pillars whose size ratios between interval and pillars is fixed at 5. The behavior is firstly compared between nanofluid and pure liquid on substrates at room temperature. For pure water droplet, the drying time is relatively longer due to the receding of contact line which slows down the liquid evaporation. Higher concentrations of nanoparticles tend to increase the total evaporation time. With varying concentrations of graphite at nano scale from 0.02% to 0.18% with an interval at 0.04% in water droplets and the heating temperature from 22 to 85°C, the wetting and evaporation of the sessile droplets are systematically studied with discussion on the impact parameters and the resulted liquid dynamics as well as the stain. The interaction among the phases together with the heating strongly affects the internal circulation inside the droplet, the evaporative rate and the pattern of particles deposition.  相似文献   
90.
A numerical and analytical model is proposed for the impact of a hollow melt droplet onto the surface of a solid polished substrate. The model is based on integral laws of the mass and energy conservation of the colliding droplet, it accounts for capillary and adhesion properties of the melt. The main parameters of the high-velocity deformation of a hollow particle have been computed: the variation of its height, shell thickness, and the contact spot diameter up to the moment of the spreading droplet solidification as well as the pressure variation inside the droplet until the moment of the shell rupture. The critical pressure value at which the rupture occurs is estimated by a formula characterizing the spherical shell strength. Quite a fair agreement of the computed values of the final diameter of the splat of a spread and solidified droplet with the data of physical experiment is shown. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 06-01-00080) as well as within the framework of the Interdisciplinary Integration Project of SB RAS No. 90 for the years 2006–2008 “Scientific Fundamentals of the Creation of Multi-Layer Nano-Structural Coatings and Interfaces in Heterogeneous Materials for Operation in the Fields of Extreme External Effects”.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号