首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14891篇
  免费   3607篇
  国内免费   1872篇
化学   8546篇
晶体学   259篇
力学   1093篇
综合类   123篇
数学   1187篇
物理学   9162篇
  2024年   27篇
  2023年   174篇
  2022年   493篇
  2021年   535篇
  2020年   740篇
  2019年   615篇
  2018年   615篇
  2017年   681篇
  2016年   770篇
  2015年   663篇
  2014年   827篇
  2013年   1286篇
  2012年   1090篇
  2011年   1138篇
  2010年   975篇
  2009年   1000篇
  2008年   945篇
  2007年   1008篇
  2006年   901篇
  2005年   793篇
  2004年   712篇
  2003年   650篇
  2002年   678篇
  2001年   508篇
  2000年   432篇
  1999年   317篇
  1998年   303篇
  1997年   223篇
  1996年   203篇
  1995年   162篇
  1994年   142篇
  1993年   97篇
  1992年   109篇
  1991年   81篇
  1990年   60篇
  1989年   61篇
  1988年   48篇
  1987年   34篇
  1986年   43篇
  1985年   44篇
  1984年   43篇
  1983年   17篇
  1982年   31篇
  1981年   13篇
  1980年   15篇
  1979年   7篇
  1978年   16篇
  1977年   7篇
  1976年   8篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
低场核磁共振结合化学计量学方法快速检测掺假核桃油   总被引:4,自引:0,他引:4  
以掺假核桃油样品为低场核磁共振检测对象,利用主成分分析法(PCA)和偏最小二乘回归法(PLSR)分析处理Carr-Purcell-Meiboom-Gill(CPMG)序列的核磁共振弛豫数据,旨在探求一种能快速检测核桃油品质的新方法。对几种常见掺假形式(掺入大豆油、玉米油、葵花油)的核桃油样品和纯核桃油样品进行检测和评价。实验结果表明:纯核桃油和掺入不同种类食用油的掺假核桃油在主成分得分图上可以得到很好的区分,且掺假样品随掺假比例在图中呈规律性分布;采用PLSR法对CPMG数据和实际掺假率进行回归,可实现对核桃油掺假水平的准确定量测定。方法快速、无损、准确,在食用油制品的品质控制及评价方面具有很大的应用潜力。  相似文献   
992.
以3-吡唑-5吡啶-1,2,4-三唑(H2L)和均苯四甲酸(H_4btec)为配体合成了2个新的同构配位聚合物[M(btec)_(0.5)(H_2L)]_n(M=Co(Ⅱ)(1),Cu(Ⅱ)(2)),通过X射线单晶衍射、元素分析、红外光谱等进行了结构表征。晶体结构分析表明配合物1和2是同构的,都属于正交晶系,空间群为Pbca。2个配位聚合物都是二维结构,通过N…H…O氢键形成三维超分子框架结构。此外对上述配合物进行了磁性研究,结果表明配合物1内通过羧基桥连的金属钴离子之间是弱的铁磁相互作用;配合物2中存在典型的順磁行为。  相似文献   
993.
通过水热方法,合成了一个杂金属的配位聚合物{[NdZn(H2pimda)3(Hpimda)(H2O)2]·H2O}n(1),(H3pimda=2-丙基-1H-4,5-咪唑二酸),并对其结构和磁性质进行了研究。结构分析结果表明配合物1的晶体属于单斜晶系,P21/c空间群。配合物1是由配体2-丙基-1H-4,5-咪唑二酸连接而成的二维层状结构,该二维层通过氢键延伸为三维超分子结构。磁性研究表明,配合物1中相邻钕离子间存在着反铁磁相互作用。  相似文献   
994.
运用密度泛函理论的第一性原理计算分析了MgZn2相的电子结构及相关磁性质。能带结构和态密度分析表明Zn4s和Zn4p轨道、Mg3s和Mg3p轨道分别发生sp态杂化,然后杂化态之间相互作用而形成Zn-Mg键;Mulliken布居分布计算显示:Zn1-Mg(Zn1是处于晶格边缘的Zn原子)和Zn2-Mg(Zn2是处于晶格内部的Zn原子)电子云重叠布居数接近0,电子密度分析显示Zn-Mg之间电子密度分布具有明显的定域性。结合上述结果与Zn、Mg原子的电负性差异,确定Zn-Mg键为极性共价键。分态密度(PDOS)分析显示,Zn1-Mg键和Zn2-Mg键的差异主要表现在Zn24s轨道在-10~-6 eV区域对成键的贡献度高于Zn14s轨道,而Zn14s轨道在2~5 eV区域对成键的贡献度高于Zn24s轨道。进一步对MgZn2的积分自旋态密度和磁矩计算表明:MgZn2磁性质表现为顺磁性,其磁性主要来源于Zn1-Mg键中的2个自旋相同的未配对电子;MgZn2的顺磁性特性将使Al-Zn-Mg-Cu(7xxx系)高强铝合金产生磁致塑性效应。  相似文献   
995.
利用一种柔性二羧酸,辅以不同的双咪唑配体在水热条件下构筑了两例具有穿插特征的钴配位聚合物,{[Co(bimb)(L)]·H2O}n(1)和{[Co(bbix)(L)]2}n(2)(H2L=4,4'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dibenzoic acid, bimb=1,1'-(1,4-butanediyl)bis(imidazole), bbix=1,4-bis(benzimidazole-1-ylmethyl)-benzene)。单晶X-射线衍射研究发现配合物1为2D→3D 4-连sql拓扑构型的三重穿插网格;配合物2为3D 4-连66 dia拓扑构型的六重穿插网格。该结构分析结果表明作为辅助配体的双咪唑配体的构型对配合物的穿插特征有重要影响。另外,我们还研究了配合物12的热稳定性及磁性。  相似文献   
996.
基于一系列二氰根铬与[Cu(cyclam)](ClO4)2反应合成了3个氰根桥联Cr-Cu-Cr三核配合物[Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O(1)(cyclam=1,4,8,11-四氮杂环十四,bpmb2-=1,2-二(2-吡啶甲酰胺基)-4-甲基苯),[Cu(cyclam)][Cr(bpdmb)(CN)2]2(2)(bpdmb2-=1,2-二(2-吡啶甲酰胺基)-4,5-二甲基苯)和[Cu(cyclam)][Cr(bpClb)(CN)2]2·4H2O(3)(bpClb2-=1,2-二(2-吡啶甲酰胺基)-4-氯苯)。单晶衍射结果表明:3个化合物是结构类似的中性三核配合物,均含有氰根桥联的Cr(Ⅲ)-CN-Cu(Ⅱ)-NC-Cr(Ⅲ)连接;磁性研究表明:氰根桥在Cr和Cu离子间传递弱的铁磁耦合作用,基于自旋哈密顿算符Ĥ=-2JCrCuŜCuCr1Cr2)拟合得到它们的磁耦合常数分别是JCrCu=1.53(2) cm-1(1),0.45(1) cm-1(2)和0.73(2) cm-1(3)。  相似文献   
997.
998.
Two cobalt phosphonates, [Co2(2,2′‐bpy)2(H2O)(pbtcH)] ( 1 ) and [Co2(H2O)(pbtcH)(phen)2] ( 2 ; pbtcH5=5‐phosphonatophenyl‐1,2,4‐tricarboxylic acid, 2,2′‐bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), with layer structures are reported. Compound 1 contains O‐C‐O and O‐P‐O bridged tetramers of Co4, which are further connected by pbtcH4? units to form a layer. In compound 2 , the cobalt tetramers made up of water‐bridged Co2 dimers and O‐P‐O linkages are connected into a layer by pbtcH4? units. Upon dehydration, compounds 1 and 2 experience single‐crystal‐to‐single‐crystal (SC–SC) structural transformations to form [Co2(2,2′‐bpy)2(pbtcH)] ( 1 a ) and [Co2(pbtcH)(phen)2] ( 2 a ), respectively. The process is reversible in each case. Notably, a breathing effect is observed for 1 , accompanied by pore opening and closing due to the reorientation of the coordinated 2,2′‐bpy molecules. The transformation was also monitored by in situ IR measurements. Magnetic studies reveal that antiferromagnetic interactions are mediated between the magnetic centers in compounds 1 and 1 a , whereas ferromagnetic interactions are dominant in compound 2 .  相似文献   
999.
ABSTRACT

In this work, the magnetic sorbent was developed by covalent binding of a Schiff base ligand, N,N’-bis(3-salicyliden aminopropyl)amine (salpr), on the surface of silica coated magnetic nanoparticles (Salpr@SCMNPs). The core-shell nanoparticle was applied for the magnetic solid-phase extraction (MSPE) combined with dispersive liquid-liquid microextraction (DLLME) of phenolic compounds from water samples prior to gas chromatography-flame ionisation detector (GC?FID). Characterisation of the Salpr@SCMNPs was performed with different physicochemical methods such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Variables affecting the performance of both extraction steps such as pH of the water sample, the sorbent amount, the desorption conditions, the extraction time; and extraction solvent were studied. Under the optimised conditions, the analytical performances were determined with a linear range of 0.01–100 ng mL?1 and a limit of detection at 0.003–0.02 ng mL?1 for all of the analytes studied. The intra-day (n = 5) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 6.9–8.9% and 7.3–10.1%, respectively. The proposed method was executed for the analysis of real water samples, whereby recoveries in the range of 92.9–99.0% and RSD% lower than 6.1% were attained.  相似文献   
1000.
通过采用简易温和的水热条件制备导电聚合物@镍铝层状双金属氧化物复合材料(CP@NiAl-LDH),构建电子/离子的高速传输纳米通道,利用SEM和XRD对复合材料结构形貌进行表征。电化学性能测试结果表明,导电聚合物为复合材料提供一定的赝电容,促进电荷的快速转移,使CP@NiAl-LDH的电容性能得以显著提升。PPy@LDH具有最好的电容性能,在1 A·g-1的电流密度下,其比容量高达3 010.3 F·g-1,当电流密度升高到20 A·g-1时,其比电容保持率为73.1%,表现出优异的倍率性能;同时,在10 A·g-1的电流密度下10 000次充放电循环后仍具有88.8%的比容量保持率,具有优异的循环稳定性。这主要归功于NiAl-LDH与导电聚合物之间的协同增强效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号