首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82088篇
  免费   13544篇
  国内免费   3913篇
化学   65880篇
晶体学   914篇
力学   4251篇
综合类   556篇
数学   14680篇
物理学   13264篇
  2024年   40篇
  2023年   229篇
  2022年   550篇
  2021年   803篇
  2020年   1170篇
  2019年   2910篇
  2018年   2786篇
  2017年   3462篇
  2016年   3845篇
  2015年   5980篇
  2014年   6177篇
  2013年   8296篇
  2012年   6672篇
  2011年   6427篇
  2010年   5345篇
  2009年   5293篇
  2008年   5754篇
  2007年   5145篇
  2006年   4627篇
  2005年   4330篇
  2004年   3723篇
  2003年   3296篇
  2002年   3893篇
  2001年   2211篇
  2000年   1981篇
  1999年   1151篇
  1998年   520篇
  1997年   459篇
  1996年   397篇
  1995年   399篇
  1994年   252篇
  1993年   229篇
  1992年   174篇
  1991年   202篇
  1990年   131篇
  1989年   89篇
  1988年   114篇
  1987年   74篇
  1986年   62篇
  1985年   66篇
  1984年   48篇
  1983年   33篇
  1982年   35篇
  1981年   38篇
  1980年   28篇
  1979年   28篇
  1978年   16篇
  1977年   11篇
  1976年   9篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Finite element analysis of fluid flow with moving free surface has been performed in 2‐D and 3‐D. The new VOF‐based numerical algorithm that has been proposed by the present authors (Int. J. Numer. Meth. Fluids, submitted) was applied to several 2‐D and 3‐D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby‐cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2‐D and 3‐D cavity filling and sloshing problems in order to demonstrate the versatility and effectiveness of the scheme. The proposed numerical algorithm resolved successfully the free surfaces interacting with each other. The simulated results demonstrated applicability of the proposed numerical algorithm to the practical problems of large free surface motion. It has been also demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non‐uniform grid systems and can be extended to 3‐D free surface flow problems without additional efforts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
202.
The frequency or dispersion relation for the least‐squares mixed formulation of the shallow‐water equations is analysed. We consider the use of different approximation spaces corresponding to co‐located and staggered meshes, respectively. The study includes the effect of Coriolis, and the dispersion properties are compared analytically and graphically with those of the mixed Galerkin formulation. Numerical solutions of a test problem to simulate slow Rossby modes illustrate the theoretical results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
203.
The basis of the two‐step in–in method is as follows: star polymers with poly(divinyl benzene) cores, synthesized by the arm‐first method, include many unreacted double bonds in their core, and these double bonds can be attacked by the carbanions of some monomers such as styrene and dienes. In this work, linear polyisoprene chains were used to attack the double bonds existing in the poly(divinyl benzene) cores of polystyrene star polymers, so that a heteroarm star polymer with polystyrene and polyisoprene arms was synthesized. It was later well characterized with size exclusion chromatography, light scattering, viscometry, UV spectroscopy, dynamic mechanical thermal analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 135–142, 2003  相似文献   
204.
The relationships of the structure and electrical properties of anisotropic HCl‐doped polyaniline (PANI) films cast from N,N′‐dimethylpropylene urea (DMPU) solutions and stretched to different draw ratios were studied. The anisotropic structure of the stretched PANI films was examined by X‐ray diffraction, near‐infrared wave‐guide coupling, and polarized infrared measurements. The PANI emeraldine base (EB) films cast from DMPU solutions had a single‐phase noncrystalline structure, and stretching of the films did not cause crystallization to occur. The transition moment angles of two weakly absorbing infrared bands were determined, and the Hermans' orientation functions for the PANI EB films were calculated. The PANI films were then doped with HCl, and the electrical properties were determined by impedance spectroscopy. With a specially designed test fixture, the in‐plane and through‐plane impedance was obtained. The conductivity along the stretch direction increased with orientation. The in‐plane conductivity was significantly higher than the through‐plane conductivity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 823–841, 2003  相似文献   
205.
The ability to prepare high Tg low shrinkage thiol–ene materials is attractive for applications such as coatings and dental restoratives. However, thiol and nonacrylated vinyl materials typically consist of a flexible backbone, limiting the utility of these polymers. Hence, it is of importance to synthesize and investigate thiol and vinyl materials of varying backbone chemistry and stiffness. Here, we investigate the effect of backbone chemistry and functionality of norbornene resins on polymerization kinetics and glass transition temperature (Tg) for several thiol–norbornene materials. Results indicate that Tgs as high as 94 °C are achievable in thiol–norbornene resins of appropriately controlled chemistry. Furthermore, both the backbone chemistry and the norbornene moiety are important factors in the development of high Tg materials. In particular, as much as a 70 °C increase in Tg was observed in a norbornene–thiol specimen when compared with a sample prepared using allyl ether monomer of analogous backbone chemistry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5686–5696, 2007  相似文献   
206.
A compact, cleavable acylal dimethacrylate cross‐linker, 1,1‐ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride‐catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross‐linker was demonstrated by using it for the preparation of one neat cross‐linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross‐linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross‐linker (isomer of EDDMA) were also prepared via GTP. The number of arms of the EDDMA‐based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA‐based MMA networks were higher than those of their EGDMA‐based counterparts. Although none of the EDDMA‐containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 °C within 1 day giving lower molecular weight products. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5811–5823, 2007  相似文献   
207.
This article is concerned with the equations governing the steady motion of a viscoelastic incompressible second‐order fluid in a bounded domain. A new proof of existence and uniqueness of strong solutions is given. In addition, using appropriate finite element methods to approximate a coupled equivalent problem, sharp error estimates are obtained using a fixed point argument. The method is applied to the two‐dimensional lid‐driven cavity problem, at low Reynolds number and in a certain range of values of the viscoelastic parameters, to analyze the combined effects of inertia and viscoelasticity on the flow. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
208.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   
209.
210.
Conductive composite films of poly(styrene‐con‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号