首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6048篇
  免费   527篇
  国内免费   294篇
化学   1752篇
晶体学   33篇
力学   2461篇
综合类   32篇
数学   1096篇
物理学   1495篇
  2024年   5篇
  2023年   70篇
  2022年   98篇
  2021年   111篇
  2020年   146篇
  2019年   129篇
  2018年   145篇
  2017年   165篇
  2016年   217篇
  2015年   150篇
  2014年   214篇
  2013年   395篇
  2012年   313篇
  2011年   362篇
  2010年   290篇
  2009年   360篇
  2008年   335篇
  2007年   338篇
  2006年   298篇
  2005年   344篇
  2004年   235篇
  2003年   248篇
  2002年   218篇
  2001年   173篇
  2000年   151篇
  1999年   131篇
  1998年   118篇
  1997年   116篇
  1996年   93篇
  1995年   124篇
  1994年   95篇
  1993年   85篇
  1992年   53篇
  1991年   73篇
  1990年   57篇
  1989年   45篇
  1988年   65篇
  1987年   56篇
  1986年   55篇
  1985年   41篇
  1984年   32篇
  1983年   14篇
  1982年   45篇
  1981年   19篇
  1980年   8篇
  1979年   8篇
  1978年   11篇
  1976年   3篇
  1973年   3篇
  1971年   4篇
排序方式: 共有6869条查询结果,搜索用时 312 毫秒
21.
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two‐dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non‐ oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non‐oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
22.
The rotating flow in the presence of a magnetic field is a problem belonging to hydromagnetics and deserves to be more widely studied than it has been to date. In the non‐linear regime the literature is scarce. We develop the governing equations for the unsteady hydromagnetic rotating flow of a fourth‐order fluid past a porous plate. The steady flow is governed by a boundary value problem in which the order of differential equations is more than the number of available boundary conditions. It is shown that by augmenting the boundary conditions based on asymptotic structures at infinity it is possible to obtain numerical solutions of the nonlinear hydromagnetic equations. Effects of uniform suction or blowing past the porous plate, exerted magnetic field and rotation on the flow phenomena, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviours of the Newtonian fluid and second‐, third‐ and fourth‐order non‐Newtonian fluids are compared for the special flow problem, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
23.
For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
24.
In this paper we are concerned with the initial boundary value problem of the micropolar fluid system in a three dimensional bounded domain. We study the resolvent problem of the linearized equations and prove the generation of analytic semigroup and its time decay estimates. In particular, LpLq type estimates are obtained. By use of the LpLq estimates for the semigroup, we prove the existence theorem of global in time solution to the original nonlinear problem for small initial data. Furthermore, we study the magneto‐micropolar fluid system in the final section. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
25.
Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.  相似文献   
26.
本文首先推导了完全导电流体内运动学磁拱无力场的基本方程,接着考虑了静态解和不定常相似性解.  相似文献   
27.
28.
We consider the isothermal flow through a cylindrical flat chamber, a model of some particular heat exchanger, for which LDV measurements and a numerical simulation have been performed. Experimental results show the establishment of an important vortex zone, the secondary flow extending all along the chamber radius. This observation leads to an expected significant increase of the fluid mixing. Results issued from the numerical simulation appear to be in close agreement with experimental data. Nevertheless, the kε model used here must be improved to obtain a better approach near the vortex centre. To cite this article: S. Petitot et al., C. R. Mecanique 330 (2002) 593–599.  相似文献   
29.
测量了19F+27Al耗散反应产物B,C,N,O,F和Ne的激发函数,入射束流的能量从110.25MeV到118.75MeV, 能量步长为250keV. 从产物的 能量自关联函数中提取了反应中所形成的中间双核系统的转动惯量, 与相粘模型计算的刚体转动惯量相比较, 结果表明形成的双核系统有大的形变.  相似文献   
30.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号