首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20913篇
  免费   2854篇
  国内免费   2152篇
化学   11194篇
晶体学   525篇
力学   2017篇
综合类   163篇
数学   1559篇
物理学   10461篇
  2025年   8篇
  2024年   270篇
  2023年   334篇
  2022年   617篇
  2021年   682篇
  2020年   915篇
  2019年   859篇
  2018年   798篇
  2017年   899篇
  2016年   1043篇
  2015年   897篇
  2014年   1218篇
  2013年   2123篇
  2012年   1367篇
  2011年   1265篇
  2010年   1070篇
  2009年   1109篇
  2008年   1146篇
  2007年   1145篇
  2006年   1064篇
  2005年   900篇
  2004年   800篇
  2003年   739篇
  2002年   615篇
  2001年   534篇
  2000年   538篇
  1999年   428篇
  1998年   402篇
  1997年   315篇
  1996年   296篇
  1995年   261篇
  1994年   241篇
  1993年   182篇
  1992年   158篇
  1991年   102篇
  1990年   80篇
  1989年   79篇
  1988年   67篇
  1987年   52篇
  1986年   50篇
  1985年   53篇
  1984年   43篇
  1983年   9篇
  1982年   38篇
  1981年   21篇
  1980年   18篇
  1979年   14篇
  1978年   11篇
  1976年   8篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
991.
A novel method for surface modification of UV‐cured epoxy network was described. Photoinitiated cationic copolymerization of a bisepoxide, namely 3,4‐epoxy cyclohexylmethyl 3,4‐epoxycyclohexanecarboxylate (EEC) with epibromohydrine (EBH) by using a cationic photoinitiator, [4‐(2‐methylpropyl)phenyl]4‐methylphenyl‐iodonium hexafluorophosphate, in propylene carbonate solution was studied. The real‐time Fourier transform infrared spectroscopic, gel content determination and thermal characterization studies revealed that both EEC and EBH monomers take part in the polymerization and epoxy network possessing bromomethyl functional groups was obtained. The bromine functions of the cured product formed on the glass surface were converted to azide functionalities with sodium azide. Independently prepared alkyne functional poly(ethylene glycol) (PEG) was subsequently anchored to azide‐modified epoxy surface by a “click” reaction. Surface modification of the network through incorporation of hydrophilic PEG chain was evidenced by contact angle measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2862–2868, 2010  相似文献   
992.
Two components of conductor topography can impact conductor loss for signals in the GHz frequency range: conductor–ceramic interface roughness and conductor edge angle. This study is an experimental investigation of the influence of these conductor topographies on conductor loss in microstrip circuits produced by thick‐film technology. The aluminum nitride ceramic substrates have different surface roughnesses due to different surface finish processes. The substrate surfaces were characterized using conventional and length‐scale fractal analysis. The conductor–ceramic interface was measured with a contact profilometer. The conductor edge angle and conductor edge profile were measured optically. It was found that there is a direct correlation between conductor loss and conductor edge angle, whereas there is an inverse correlation between loss and substrate roughness or relative length of the conductor–ceramic interface. This is the opposite result to the conventional expectation of surface roughness effects on conductor loss. There is also a negative correlation between conductor edge angle and surface roughness or relative length. The loss behavior can be explained by the interaction of the conductor paste with the surfaces during processing. The paste tends to spread more on the smoother surfaces, and thus creates an elongated edge of diminishing cross‐section and a small edge angle. This leads to greater conductor loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
993.
In the present study, controlled reheating and breakdown rolling experiments have been carried out and the thickness, structure and uniformity of the resultant near‐surface deformed layer have been characterised by scanning and transmission electron microscopy. High aspect ratio rolling, coupled with an increased rolling speed and rough and worn roll surfaces results in a high degree of interaction between the work roll and work pieces. This generates a shingled surface appearance with a high population of transverse surface cracks and a relatively thick near‐surface deformed layer. In contrast, relatively low aspect ratio rolling, coupled with a reduced rolling speed and freshly ground work roll surfaces generates a relatively thin near‐surface deformed layer. The thickness of the near‐surface deformed layer varies across the alloy surface and is directly related to the shingles, the surface cracks and the distribution of coarse intermetallics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
994.
In the present study, the effects of mechanical polishing on the microstructure and corrosion behaviour of AA7075 aluminium alloy are investigated. It was found that a nano‐grained, near‐surface deformed layer, up to 400 nm thickness, is developed due to significant surface shear stress during mechanically polishing. Within the near‐surface deformed layer, the alloying elements have been redistributed and the microstructure of the alloy is modified; in particular, the normal MgZn2 particles for T6 are absent. However, segregation bands, approximately 10‐nm thick, containing mainly zinc, are found at the grain boundaries within the near‐surface deformed layer. The presence of such segregation bands promoted localised corrosion along the grain boundaries within the near‐surface deformed layer due to microgalvanic action. During anodic polarisation of mechanically polished alloy in sodium chloride solution, two breakdown potentials were observed at ?750 mV and ?700 mV, respectively. The first breakdown potential is associated with an increased electrochemical activity of the near‐surface deformed layer, and the second breakdown potential is associated with typical pitting of the bulk alloy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
995.
A mono‐lancunary keggin‐type decatungstosilicate (SiW11) polyoxometalate (POM) modified by γ‐aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), fourier transition infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate–organosilane hybrid (SiW11KH550) and PI/SiW11KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW11KH550 copolymers increases from 330°C (for neat PI) to 409°C (for the copolymer sample with 10 wt% of SiW11KH550). Dielectric measurement showed that both the dielectric constant and the dielectric loss for the copolymer thin films decreased with the increase in SiW11KH550 content, and the dielectric constant and dielectric loss values decreased to 2.1 and 3.54 × 10?3, respectively, for the copolymer sample with 10 wt% of SiW11KH550. The incorporation of SiW11KH550 into polymer matrices is a promising approach to prepare PI films with a low dielectric constant and low dielectric loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
996.
In this study, master of the microlens arrays is fabricated using micro dispensing technology, and then electroforming technology is employed to replicate the Ni mold insert of the microlens arrays. Finally, micro hot embossing is performed to replicate the molded microlens arrays from the Ni mold insert. The resin material is used as the dispensing material, which is dropped on a glass substrate. The resin is exposed to a 380 W halogen light. It becomes convex under surface tension on the glass substrate. A master for the microlens arrays is then obtained. A 150‐nm‐thick copper layer is sputtered on the master as an electrically conducting layer. The electroforming method replicates the Ni mold insert from the master of the microlens arrays. Finally, micro hot embossing is adopted to replicate the molded microlens arrays. The micro hot embossing experiment employs optical films of polymethylmethacrylate (PMMA) and polycarbonate (PC). The processing parameters of micro hot embossing are processing temperature, embossing pressure, embossing time, and de‐molding temperature. Taguchi's method is applied to optimize the processing parameters of micro hot embossing for molded microlens arrays. An optical microscope and a surface profiler are utilized to measure the surface profile of the master, the Ni mold insert and the molded microlens arrays. AFM is employed to measure the surface roughness of the master, the Ni mold insert and the molded microlens arrays. The sag height and focal length are determined to elucidate the optical characteristics of the molded microlens arrays. Copyright © 2009 John & Sons, Ltd.  相似文献   
997.
Microfibrillated cellulose (MFC), which consists of a web‐like array of cellulose fibrils having a diameter in the range of 10–100 nm, was incorporated into a cellulose acetate (CA) matrix to form a totally biobased structural composite. Untreated and a 3‐aminopropyltriethoxysilane (APS) surface treated MFC was combined with a CA matrix by film casting from an acetone suspension. The effectiveness of the surface treatment was determined by infrared spectroscopy and X‐ray photoelectron spectroscopy. The Young's moduli of APS treated MFC composite films increase with increasing MFC content from 1.9 GPa for the CA to 4.1 GPa at 7.5 wt % of MFC, which is more than doubled. The tensile strength of the composite film increases to a maximum of 63.5 MPa at 2.5 wt % compared to the CA which has a value of 38 MPa. The thermal stability of composites with treated MFC is also better than the untreated MFC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 153–161, 2010  相似文献   
998.
Hydrogen bonding interactions, phase behavior, crystallization, and surface hydrophobicity in nanostructured blend of bisphenol A‐type epoxy resin (ER), for example, diglycidyl ether of bisphenol A (DGEBA) and poly(ε‐caprolactone)‐block‐poly(dimethyl siloxane)‐block‐poly(ε‐caprolactone) (PCL–PDMS–PCL) triblock copolymer were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, transmission electron microscopy, small‐angle X‐ray scattering, and contact angle measurements. The PCL–PDMS–PCL triblock copolymer consisted of two epoxy‐miscible PCL blocks and an epoxy‐immiscible PDMS block. The cured ER/PCL–PDMS–PCL blends showed composition‐dependent nanostructures from spherical and worm‐like microdomains to lamellar morphology. FTIR study revealed the existence of hydrogen bonding interactions between the PCL blocks and the cured epoxy, which was responsible for their miscibility. The overall crystallization rate of the PCL blocks in the blend decreased remarkably with increasing ER content, whereas the melting point was slightly depressed in the blends. The surface hydrophobicity of the cured ER increased upon addition of the block copolymer, whereas the surface free energy (γs) values decreased with increasing block copolymer concentration. The hydrophilicity of the epoxy could be reduced through blending with the PCL–PDMS–PCL block copolymer that contained a hydrophobic PDMS block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 790–800, 2010  相似文献   
999.
Cerium oxide‐filled high density polyethylene (HDPE) composites for microwave substrate applications were prepared by sigma‐blend technique. The HDPE was used as the matrix and the dispersion of CeO2 in the composite was varied up to 0.5 by volume fraction, and the dielectric properties were studied at 1 MHz and microwave frequencies. The variations of thermal conductivity (keff), coefficient of thermal expansion (αc) and Vicker's microhardness with the volume fraction of the filler were also measured. The relative permittivity (εeff) and dielectric loss (tan δ) were found to increase with increase in CeO2 content. For 0.4 volume fraction loading of the ceramic, the composite had εeff = 5.7, tan δ = 0.0068 (at 7 GHz), keff = 2.6 W/m °C, αc = 98.5 ppm/°C, Vicker's microhardness of 18 kg/mm2 and tensile strength of 14.6 MPa. Different theoretical approaches have been used to predict the effective permittivity, thermal conductivity, and coefficient of thermal expansion of composite systems and the results were compared with the experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 998–1008, 2010  相似文献   
1000.
We present a computational approach to protein‐protein docking based on surface shape complementarity (“ProBinder”). Within this docking approach, we implemented a new surface decomposition method that considers local shape features on the protein surface. This new surface shape decomposition results in a deterministic representation of curvature features on the protein surface, such as “knobs,” “holes,” and “flats” together with their point normals. For the actual docking procedure, we used geometric hashing, which allows for the rapid, translation‐, and rotation‐free comparison of point coordinates. Candidate solutions were scored based on knowledge‐based potentials and steric criteria. The potentials included electrostatic complementarity, desolvation energy, amino acid contact preferences, and a van‐der‐Waals potential. We applied ProBinder to a diverse test set of 68 bound and 30 unbound test cases compiled from the Dockground database. Sixty‐four percent of the protein‐protein test complexes were ranked with an root mean square deviation (RMSD) < 5 Å to the target solution among the top 10 predictions for the bound data set. In 82% of the unbound samples, docking poses were ranked within the top ten solutions with an RMSD < 10 Å to the target solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号