首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421篇
  免费   436篇
  国内免费   243篇
化学   1207篇
晶体学   32篇
力学   57篇
综合类   11篇
数学   169篇
物理学   1624篇
  2024年   9篇
  2023年   23篇
  2022年   67篇
  2021年   79篇
  2020年   97篇
  2019年   96篇
  2018年   77篇
  2017年   71篇
  2016年   108篇
  2015年   66篇
  2014年   91篇
  2013年   276篇
  2012年   104篇
  2011年   143篇
  2010年   114篇
  2009年   173篇
  2008年   186篇
  2007年   134篇
  2006年   112篇
  2005年   138篇
  2004年   177篇
  2003年   105篇
  2002年   107篇
  2001年   79篇
  2000年   50篇
  1999年   71篇
  1998年   50篇
  1997年   43篇
  1996年   38篇
  1995年   40篇
  1994年   34篇
  1993年   25篇
  1992年   11篇
  1991年   11篇
  1990年   9篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1974年   3篇
  1973年   5篇
排序方式: 共有3100条查询结果,搜索用时 15 毫秒
91.
By employing small-angle neutron scattering (SANS), we investigated the microstructures of, poly(N-isopropylacrylamide) (PNIPA)-block-poly(ethylene glycol) (PEG) (NE) in deuterated water D2O, as related to macroscopic behaviors of fluidity, turbidity and synerisis. SANS revealed following results: (i) microphase separation occurs at around above 17 °C in a temperature range of transparent sol below 30 °C. In the microdomain appeared in the transparent sol state, both block chains of PNIPA and PEG are swollen by water; (ii) for the NE solution of polymer concentration Wp > 3.5% (w/v), corresponding to opaque gel above 30 °C, a percolated structure, i.e., network-like domain is formed by NE as a result of macrophase separation due to dehydration of the PNIPA chains. As the temperature increases toward 40 °C, the network domain is squeezed along a direction parallel to the NE interface, which leads to increase of the interfacial thickness given by swollen PEG chains and to the macroscopic synerisis behavior.  相似文献   
92.
Xerogels were prepared from zirconium, barium, aluminum, lanthanum and lithium acetates, corresponding to a Li containing ZBLA composition. The study of their thermal properties (DSC, TG/DTG, FT-IR) showed that they might be used as chemically stable precursors in the preparation of fluoride glasses. Hydrofluoric acid in solution was chosen as a mild fluorinating agent. This newly proposed technique of fluorinating allowed to obtain high quality ZBLALi glass which presents the advantage of higher thermal stability and homogeneity in comparison with the glass obtained using individual commercial fluorides.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
93.
Substitution of Pb for Bi in the recently characterized mixed-valence lead-platinum oxide PbPt2O4 was attempted and a Pb1−xBixPt2O4 solid solution was obtained for 0≤x≤0.3. Powder X-ray diffraction study showed that all substituted compounds crystallize with similar triclinic unit cell and PbPt2O4 lattice parameters. The structural model of Pb0.7Bi0.3Pt2O4 was refined from powder X-ray diffraction data using the Rietveld method and the results indicate the same crystal structure than PbPt2O4 with one mixed Pb/Bi atomic site. Neutron diffraction realized on the two limit compositions of the solid solution (x=0 and 0.3) allowed to confirm the PbPt2O4 and Pb0.7Bi0.3Pt2O4 stoichiometries. Mean oxidation degree of Pt atoms in the [PtO4] infinite chains decreases from +3 for PbPt2O4 to +2.7 for Pb0.7Bi0.3Pt2O4. Conductivity measurements show a metallic behavior for all the compositions except the limit composition x=0.3 for which a semiconducting behavior appears.  相似文献   
94.
Thin powders and foams of boron nitride have been prepared from molecular precursors for use as noble metal supports in the catalytic conversion of methane. Different precursors originating from borazines have been tested. The best results were obtained using a precursor derived from trichloroborazine (TCB) which, after reacting with ammonia at room temperature and then thermolyzing up to 1800°C, led to BN powders with a specific area of more than 300 m2 g−1 and a micrometric spherical texture. Comparable results were obtained using polyborazylene under similar conditions. Aminoborazine-derived precursors did not yield such high specific area ceramics but the BN microstructure resembled a foam with a crystallized skin and amorphous internal part. These differences were related to the chemical mechanism of the conversion of the precursor into BN. Polyhaloborazines and polyborazines yielded BN through gas-solid reactions whereas aminoborazine polymers could be kept waxy up to high temperatures, which favored the glassy foam. Catalysts composed of BN support and platinum have been prepared using two routes: from a mixture of precursor or by impregnation of a BN powder leading to very different catalysts.  相似文献   
95.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   
96.
Different techniques were selected for comprehensive characterization of seven samples of fly ashes collected from the electrostatic precipitator of the San Nicolás thermal power plant (Buenos Aires, Argentina). Particle size was measured using laser based particle size analyzer. X-ray diffraction powder (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the mineral phase present in the matrix consisting basically of aluminosilicates and large amounts of amorphous material. The predominant crystalline phases were mullite and quartz. Major and minors elements (Al, Ca, Cl, Fe, K, Mg, Na, S, Si and Ti) were detected by energy dispersive X-ray analysis (EDAX). Trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, V and Zn) content was quantified by inductively coupled plasma optical emission spectrometry (ICP OES). Different acid mixtures and digestion procedures were compared for subsequent ICP OES measurements of the dissolved samples. The digestion procedures used were: i) a mixture of FH + HNO3 + HClO4 (open system digestion); ii) a mixture of FH + HNO3 (MW-assisted digestion); iii) a mixture of HF and aqua regia (MW-assisted digestion). Instrumental neutron activation analysis (INAA) was employed for the determination of As, Ba, Co, Cr, Ce, Cs, Eu, Fe, Gd, Hf, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Th, U and Yb. The validation of the procedure was performed by the analysis of two certified materials namely, i) NIST 1633b, coal fly ash and ii) GBW07105, rock. Mean elements content spanned from 41870 μg g− 1 for Fe to 1.14 μg g− 1 for Lu. The study showed that Fe (41870 μg g− 1) ? V (1137 μg g− 1) > Ni (269 μg g− 1) > Mn (169 μg g− 1) are the main components. An enrichment, with respect to crustal average, in many elements was observed especially for As, V and Sb that deserve particular interest from the environmental and human health point of view.  相似文献   
97.
The semiconductor industry is now in the early stages of an unprecedented change in materials set for the integrated circuit (IC) interconnect structure. The traditional layers of aluminum conductors and silicon dioxide dielectrics are being replaced by copper thin films and a variety of low k candidates, respectively. In many cases, fluorine confers desirable properties on either the precursors or the final films. At the same time, fluorine presents some potentially adverse effects, which have led to a so-called “fear-of-fluorine” in interconnect applications. This paper will review the proposed uses of fluorinated compounds in the interconnect structures, covering both precursors and the resulting thin films. Both the status of technical studies, and the prospects for commercial implementation, will be addressed.  相似文献   
98.
We have studied salt free semi dilute polyelectrolyte solutions by small angle neutron scattering. Specific labelling associated with an extrapolation method has allowed the separation of the form factor of a single polyelectrolyte chainS 1(q) and the structure factorS 2(q). Two lengths are deduced from these two factors: the persistence lengthb t which characterizes the electrostatic interactions along the chain by a fitting ofS 1(q) with calculation of the scattering function for a wormlike chain, and fromS 2(q),q m –1 which characterizes the interactions between chains. These two lengths vary in the same way with the concentration of polyions (b t C p –1/2 ,q m –1 C p –1/2 ) and a constant relation exists between them: only one length is then necessary to describe the structure of polyelectrolyte soltuion on this semidilute concentration range.Laboratoire Commun CEA-CNRS.  相似文献   
99.
《应用光谱学评论》2013,48(1):19-55
ABSTRACT

This review is intended to present an introduction to the use of thermal neutron activation analysis (TNAA) as an analytical technique for the determination of elements in almost all kinds of matrices. This method of analysis is generally multi-element and experimental conditions can be designed to be nondestructive to the sample. This review will focus on thermal neutron activation as this technique allows determination of approximately two-thirds of the elements on the periodic chart. There are also more and wider spread facilities in the United States that offer these services. The available facilities are located across the United States and are generally accessible to everyone. The review will also detail the advantages and disadvantages of TNAA compared to other common spectroscopic methods. An outline of the general procedure for performing the analysis of the elements using activation analysis is presented to emphasize the ease of using this technique. The outline is divided into sections that give the general procedure, how to choose the correct nuclear reaction and reaction product, and the main sources of errors that can affect the results of the study. These sources of error are subdivided into general types of errors. The general types of errors are divided into those related to pre-chemistry, problems associated with the irradiation of the samples, errors associated with the use of nuclear constants (cross sections, half-lives, transition probabilities, etc.), the choice of the correct reaction and reaction product, and those associated with the counting of the irradiated samples. The general theory of activation analysis is presented and summarizes the derivation of the equations used and the development of the comparator method of analysis. The comparator method is used to simplify the method by irradiating samples along with standards. This reduces the need for using the nuclear constants and thus reducing errors. The use of radiochemical separations to isolate analytes of choice from the radioactive matrix is also described. Some current literature is also included to give a feel for current applications of the use of thermal neutron activation analyses. The summary also describes some of the different matrices that have been used for analyses.  相似文献   
100.
Charge transfer via electron hopping from an electron donor (D) to an acceptor (A) in nanoscale, plays a crucial role in optoelectronic materials, such as organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). Here, we propose a strategy for binding D/A units in space, where intramolecular charge-transfer can take place. The resulted material DM-Me-B is able to give bright emission in this molecular architecture because of the good control of D/A interaction and conformational rigidity. Moreover, DM-Me-B presents small singlet-triplet splitting energy, enabling thermally activated delayed fluorescence. Therefore, the DM-Me-B exhibits ~20% maximum external quantum efficiency and low efficiency roll-off at 1000 cd/m2, certifying an effective strategy in controlling D/A blocks through space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号