首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2529篇
  免费   223篇
  国内免费   368篇
化学   2350篇
晶体学   194篇
力学   41篇
综合类   4篇
数学   11篇
物理学   520篇
  2024年   3篇
  2023年   22篇
  2022年   37篇
  2021年   56篇
  2020年   78篇
  2019年   55篇
  2018年   37篇
  2017年   71篇
  2016年   109篇
  2015年   99篇
  2014年   93篇
  2013年   256篇
  2012年   93篇
  2011年   109篇
  2010年   128篇
  2009年   124篇
  2008年   143篇
  2007年   159篇
  2006年   174篇
  2005年   170篇
  2004年   155篇
  2003年   131篇
  2002年   114篇
  2001年   76篇
  2000年   86篇
  1999年   88篇
  1998年   73篇
  1997年   52篇
  1996年   70篇
  1995年   60篇
  1994年   46篇
  1993年   48篇
  1992年   30篇
  1991年   17篇
  1990年   17篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   8篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
排序方式: 共有3120条查询结果,搜索用时 0 毫秒
991.
992.
The amylose–water interaction is part of an important equilibrating process within the starch matrix leading to slow recrystallization of amylose chains and growth of anisotropic properties in the starch matrix. This article highlights the influence of nanoclay on (a) the structural development of amylose crystallinity and (b) the rate of water loss from the starch matrix. By varying the nanocomposites level (1.5–4 wt %), a unique microstructure is obtained that “locks” moisture and it was found that on a per unit weight basis of the starch matrix, addition of 4 wt % nanoclay resulted in additional 8.5% water in the matrix. Also, it was found that increasing the nanoclay from 2 to 4% by weight, the composite modulus jumped by 100% indicating excellent interaction between clay nanocomposites and starch polymer. Analysis of the starch crystallinity data indicates that nanocomposites retard the mobility of the starch molecules (specially the long chain amylose component) to restrict the movement of “associated” water around starch and this increases the “locked” water by ~10%. The results strongly suggest that a new structural unit may be formed by amylose–water–clay interaction which enhances the composites properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 979–987, 2008  相似文献   
993.
The compatibilization effects provided by ammonium terminated PMMA(PMMA‐t‐NH3+) on monomer casting polyamide6 (MCPA6)/clay(pristine sodium montmorillonite) nanocomposites were studied in this article. PMMA‐t‐NH3+ used in this study was prepared by radical polymerization using 2‐aminoethanethiol hydrochloride as chain transfer agent. MCPA6/clay/PMMA‐t‐NH3+ nanocomposites were prepared by in situ anionic ring‐opening polymerization of ε‐caprolactam. X‐ray diffraction and transmission electron microscopy plus rheological measurement were used to characterize those nanocomposites. The results indicated that PMMA‐t‐NH3+ would be a good compatibilizer for this system. With PMMA‐t‐NH3+ content increasing, a better dispersion of clay was successfully achieved in the MCPA6 matrix. Furthermore, analysis using differential scanning calorimetry indicated that well dispersed clay layers limited the mobility of the MCPA6 molecule chains to crystallize, reduce the crystalline degree, and favor the formation of the γ‐crystalline form of the MCPA6 matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1802–1810, 2008  相似文献   
994.
Poly(ethylene terephthalate) (PET)/Barite nanocomposites were prepared by direct melt compounding. The effects of PET‐Barite interfacial interaction on the dynamic mechanical properties and crystallization were investigated by DMA and DSC. The results showed that Barite can act as a nucleating agent and the nucleation activity can be increased when the Barite was surface‐modified (SABarite). SABarite nanoparticles induced preferential lamellae orientation because of the strong interfacial interaction between PET chains and SABarite nanoparticles, which was not the case in Barite filled PET as determined by WAXD. For PET/Barite nanocomposites, the Avrami exponent n increased with increasing crystallization temperature. Although at the same crystallization temperature, the n value will decrease with increasing SABarite content, indicating of the enhancement of the nucleation activity. Avrami analyses suggest that the nucleation mechanism is different. The activation energy determined from Arrhenius equation reduced dramatically for PET/SABarite nanocomposite, confirming the strong interfacial interaction between PET chains and SABarite nanoparticles can reduce the crystallization free energy barrier for nucleus formation. In the DSC scan after isothermal crystallization process, double melting behavior was found. And the double endotherms could be attributed to the melting of recrystallized less perfect crystallites or the secondary lamellae produced during different crystallization processes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 655–668, 2009  相似文献   
995.
Transport and absorption in metal cation exchanged and polyvinylpyrrolidone (PVP) modified Nafion® films were studied by various techniques. To understand the microscopic basis for permeation, time resolved small angle X‐ray scattering (SAXS) was used to characterize the ionic domain morphology while films were exposed to vapors of water, dimethyl methylphosphonate (DMMP), or triethyl phosphate. Macroscopic weight uptake studies of DMMP vapor into PVP‐Nafion® were also used to help explain the SAXS absorption studies and DMMP permeation properties. The SAXS results were correlated with macroscopic permeation rates of DMMP, Soman, and water through several different membranes. To provide additional basis for the SAXS derived morphologies, tapping‐mode AFM was also used to image the 3–5 nm diameter ionic domains. A goal for protective suit applications is to find films with a balance of high moisture permeation rate for comfort, and low DMMP permeation. The best balance of properties in this context was found with PVP‐ and zirconyl‐modified films. In another extreme, the permeation rates of both water and DMMP through cesium‐modified Nafion® were low. SAXS studies were used to explain this where the ionic domains of cesium‐modified Nafion® did not “expand” when exposed to DMMP or water vapor. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 284–298, 2009  相似文献   
996.
Free volume properties of a series of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) membranes, which were produced by various nonisothermal crystallization processes (rapid‐, step‐, and slow‐cooling processes), were investigated using positron annihilation lifetime (PAL) spectroscopy over a temperature range of 25–90 °C. From the annihilation lifetime parameters, the temperature dependence of free volume size, amount, size distribution, and fractional free volume and thermal expansion properties of free volume were discussed. A model which assumed that amorphous phase was subdivided into mobile and rigid amorphous fractions (MAF and RAF) in the semicrystalline polymer was considered to interpret the temperature dependence of those free volume properties. Morphological observation of the semicrystalline polymer by small‐angle X‐ray scattering (SAXS) indicated that the rapid‐cooled (cold‐crystallized) membranes showed a much thinner thickness of the repeating lamellar/amorphous layers and most likely higher amount of RAF, which restrained the chain motion, than the step‐ and slow‐cooled (melt‐crystallized) membranes. The difference of free volume properties among various PHBV membranes was created according to the crystalline structure of the polymer from different thermal history. The polymer crystallized with slower cooling rate induced higher crystallinity and resulted in less free volume amount and lower fractional free volume. In addition, the thermal expansion coefficients of free volume size were affected by the crystallization rate of PHBV polymer. Larger distribution of the free volume size of melt‐crystallized membranes was observed as a result of the bimodal distribution of the lamellar periodicity and less amount of RAF than that of the cold‐crystallized membranes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 855–865, 2009  相似文献   
997.
The new fluctuation‐assisted mechanism for nucleation and crystallization in the isotactic polypropylene/poly(ethylene‐co‐octene) alloy has been studied. We found that the liquid–liquid phase separation (LLPS) had a dominant influence on the crystallization kinetics through the nucleation process. After LLPS, the nucleation of crystallization mainly occurred at the interface of the phase‐separated domains. It is because that the concentration fluctuations of the LLPS induced the motion of polymer chains and possibly some segmental alignment and/or orientation in the concentration gradient regions through interdiffusion, which could assist the formation of nuclei for crystallization. In other words, the usual nucleation energy barrier could be overcome (or at least partially) by the concentration fluctuation growth of LLPS in the unstable regions. This could be viewed as a new kind of heterogeneous nucleation and could be an addition to the regular nucleation and growth mechanism for crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 166–172, 2009  相似文献   
998.
The pressure‐volume‐temperature (PVT) dependencies of polyamide‐6 and its nanocomposites (polymeric nanocomposites) were measured at temperatures T = 300–600 K and pressures P = 0.1–190 MPa, thus spanning the range of molten and “solid” phases. The Simha‐Somcynsky (S‐S) cell‐hole equation of state (EOS) was used for describing the molten region. At Tg(P) ≤ TTm(P), the “solid” phase is a mixture of the liquid polyamide‐6 with dispersion of crystals. Accordingly, the PVT behavior in this region was described as a combination of the S‐S EOS for the liquid phase and the Midha‐Nanda‐Simha‐Jain (MNSJ) EOS for the crystalline one. These two theories based on different models yielded two sets of the characteristic reducing parameters, P*, T*, V* and the segmental molecular weight, Ms. Incorporation of 2 and 5 wt % clay increased P* and reduced T* and V*, but the effects were small. Fitting the combination of S‐S and MNSJ EOS' to isobaric “solid” phase data yielded the total crystallinity, Xcryst, and the correcting excess specific volume, ΔVm,c. Both parameters were sensitive to pressure, P, and the clay content, w—the former increased with P and w, whereas the latter decreased. The raw PVT data were numerically differentiated to obtain the thermal expansion and compressibility coefficients, α and κ, respectively. At T < Tm, addition of clay reduced their relative magnitude, whereas at T > Tm, the opposite effect was observed, most likely owing to the excess of intercalant in the polymeric nanocomposites samples. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 966–980, 2009  相似文献   
999.
A method for studying crystallization of hard sphere like particles in two dimensions is presented. The method involves trapping the particles at the interface between two immiscible liquids. Particles at the interface undergo 2D Brownian motion, and at sufficiently high densities crystallization is observed. The pseudo hard sphere nature of the particle interactions under these conditions is maintained, as demonstrated by the area density at which crystallization occurs. In contrast to established techniques for studying crystallization in pseudo 2D hard spheres, the particles trapped at the interface undergo no vertical motion, so the system is in principle closer to a true 2D system. The method is therefore amenable to the study of the effects of polydispersity on crystallization behaviour. The advantages and disadvantages of the method are discussed.  相似文献   
1000.
The effect of prepolymer molecular weight on the solid‐state polymerization (SSP) of poly(bisphenol A carbonate) was investigated using nitrogen (N2) as a sweep fluid. Prepolymers with different number–average molecular weights, 3800 and 2400 g/mol, were synthesized using melt transesterification. SSP of the two prepolymers then was carried out at reaction temperatures in the range 120–190 °C, with a prepolymer particle size in the range 20–45 μm and a N2 flow rate of 1600 mL/min. The glass transition temperature (Tg), number–average molecular weight (Mn), and percent crystallinity were measured at various times during each SSP. The phenyl‐to‐phenolic end‐group ratio of the prepolymers and the solid‐state synthesized polymers was determined using 125.76 MHz 13C and 500.13 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. At each reaction temperature, SSP of the higher‐molecular‐weight prepolymer (Mn = 3800 g/mol) always resulted in higher‐molecular‐weight polymers, compared with the polymers synthesized using the lower molecular weight prepolymer (Mn = 2400 g/mol). Both the crystallinity and the lamellar thickness of the polymers synthesized from the lower‐molecular‐weight prepolymer were significantly higher than for those synthesized from the higher‐molecular‐weight prepolymer. Higher crystallinity and lamellar thickness may lower the reaction rate by reducing chain‐end mobility, effectively reducing the rate constant for the reaction of end groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4959–4969, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号