首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2988篇
  免费   100篇
  国内免费   347篇
化学   2435篇
晶体学   340篇
力学   43篇
综合类   7篇
数学   12篇
物理学   598篇
  2025年   1篇
  2024年   16篇
  2023年   39篇
  2022年   47篇
  2021年   73篇
  2020年   97篇
  2019年   95篇
  2018年   60篇
  2017年   96篇
  2016年   121篇
  2015年   109篇
  2014年   110篇
  2013年   272篇
  2012年   109篇
  2011年   118篇
  2010年   141篇
  2009年   131篇
  2008年   150篇
  2007年   164篇
  2006年   176篇
  2005年   179篇
  2004年   159篇
  2003年   139篇
  2002年   123篇
  2001年   81篇
  2000年   87篇
  1999年   88篇
  1998年   73篇
  1997年   52篇
  1996年   70篇
  1995年   60篇
  1994年   46篇
  1993年   48篇
  1992年   30篇
  1991年   17篇
  1990年   17篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   8篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
排序方式: 共有3435条查询结果,搜索用时 15 毫秒
991.
    
X‐ray phase contrast imaging (PCI) based on synchrotron radiation was introduced for the first time as an in situ imaging way to investigate sea salt phase change, i.e. deliquescence and crystallization in atmospheric environment. A performance on the deliquescence of pure NaCl, which is the dominant component in sea salt, demonstrated that this technique can directly observe the change of core particle and differentiate the outer water layer clearly in solid‐aqueous system of ~100 µm scale. The imaging results showed that sea salt particle deliquesced on a large scale of relative humidity (RH) between 34 and 97% RH as a solid–liquid drop, while no clear deliquescence RH was observed during the process. According to the drop size growth curve, sea salt deliquescence can be divided into three steps, namely water accumulating step (34–75% RH), bulk melting step (75–86% RH) and delay dissolving step (>86% RH), which are most probably dominated by grouped components as MgCl2/CaCl2/MgSO4, NaCl and Na2SO4/KCl/K2SO4, respectively. Instead at a sole RH, the crystallization of sea salt solution occurred at a range of 46–58% RH, which well agreed with the theory proposed by Ge et al. The aqueous‐solid condition provided by sea salt deliquescence and crystallization may greatly enhance the heterogeneous chemical reactions in atmosphere. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
    
In this article, it is demonstrated that doctor blading of thin poly‐3‐hexylthiophene/phenyl‐C61‐butyric acid methyl ester (1/1) bulk‐hetero junction films from toluene leads to an improved nanocrystallinity, when compared with their unannealed chlorobenzene processed counterparts. This difference in morphology was demonstrated by solid‐state NMR and Rapid Heating Cooling Calorimetry (RHC), being useful complementary techniques to investigate the active layer morphology of photovoltaic devices. An increased PC60BM nanocrystallinity is indicated by several NMR relaxation decay times (T1C, T1H, and T1ρH) and confirmed by an increase of the melting enthalpy in RHC experiments. An improved solar cell performance further strengthens this conclusion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
993.
    
Morphosynthesis of poly[4‐(1,4‐phenylene)oxyphthalimide] (POPI) and poly[4‐(1,4‐phenylene)oxyphthalimide‐co‐4‐phthalimide] (POPI‐PPI) was examined by using the crystallization during the polymerization. The POPI fibrillar crystals were obtained as precipitates with the formation of spherical aggregates of plate‐like crystals. Some of the POPI fibrillar crystals were longer than 15 μm. They possessed high crystallinity and the molecules aligned perpendicular to the long direction of the fibers. On the other hand, one‐dimensional structures of POPI‐PPI such as ribbon, cone, rod, and fiber were obtained as precipitates by the copolymerization. The copolymer molecules might align along the long direction of the cone‐like crystals. The morphology of these poly(ether‐imide)s could be controlled by not only the polymerization condition but also with the aid of copolymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
994.
    
A single carbon nanotube has many similarities with an individual polymer chain including the fact that the end‐to‐end length of both are often about the same and the diameter of the chain is about the same (for single‐walled nanotubes) or only ~10 to 20 times larger (for multiwalled nanotubes). The combination of the solid surface and the similarity of the two materials means that polymer physics are altered in manners not seen with any other type of commonly used filler. The purpose of this review is to update a chapter that appears in a recent tome by Grady (2011) and describe how polymer physics is altered in composites that contain carbon nanotubes. Subjects that will be discussed include chain configuration, glass transition, polymer diffusion, unit cells and crystalline superstructure (lamellae, spherulites and shish‐kebabs), and crystallization kinetics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
995.
    
This study demonstrates an approach to generate reinforcement in thermosetting polymers through crystal growth of crystallizable solvents. Emphasis is to identify the reaction conditions, which lead to suitable reinforcement in selected compounds. Crystallization behavior and miscibility of dimethylsulfone (DMS) in diglycidylether of bisphenol‐A epoxy monomer was investigated. Small angle laser scattering and optical microscopy were utilized to monitor phase separation and crystallization of DMS at different isothermal conditions during the cure process. It is shown that DMS crystals grow anisotropically to form faceted geometries and demonstrate possible structures to anchor into the epoxy matrix. The growth mechanism and the agility of crystals are shown to be affected by the cure reaction as well as depth of supercooling. A completely cured sample with 15 wt % DMS shows a broad map of rich morphologies from nanoscale particles to uniformly distributed macroscale, discontinuous fiber‐like crystals generated only by altering the curing conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 840–849, 2010  相似文献   
996.
    
The spherulitic growth of poly(ethylene succinate) (PES) and two PES‐rich copolyesters at constant cooling rate was monitored and recorded using a system of polarized light microscope. Individual experiment of these polyesters lasted 40, 60, and 120 min, respectively. A continuous curve of isothermal growth rates between the melting and glass transition temperatures can be obtained after curve fitting procedures. These curves fit very well with those data points determined in the isothermal experiments, which are time consuming. The continuous data of PES was analyzed with the Hoffman (Lauritzen equation. A transition of regime II → III was found at 70.7 °C, which is very close to the literature values. The maximum growth rate was formulated in the Arrhenius and WLF expressions for the molecular transport term. A master curve of crystal growth rate for PES was constructed based on the continuous data of PES. When the reduced growth rates after normalization were plotted against the reduced temperatures, a universal master curve was observed for PES and two PES‐rich copolyesters. This nonisothermal method provides an efficient and reliable way for studying the crystallization kinetics of polymer and for constructing a universal master curve of crystal growth rate of PES. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 932–939, 2010  相似文献   
997.
    
Nucleation of isotactic polypropylene (iPP) crystallization by gold (Au) nanoparticles was studied. Regardless of their size, 4.3, 8.8, 28.3, and 84.5 nm, all particles were able to nucleate spherulites when deposited on the iPP surface. However, when added and melt‐mixed with iPP, only the smallest particles affected significantly the iPP bulk crystallization. Au nanoparticles larger than 4.3 nm, at the concentration of 0.001 wt %, did not influence the crystallization of iPP. Contrary to this, 0.001 and 0.005 wt % of Au nanoparticles having the size of 4.3 nm increased crystallization temperature of the iPP by 7–8 °C and decreased markedly the sizes of polycrystalline aggregates. Aggregation of Au nanoparticles in the polymer matrix was evidenced by electron microscopy and contributed to their decreased effectiveness in the nucleation of iPP crystallization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 469–478, 2010  相似文献   
998.
    
A homopolymer iPP and a series of propylene‐ethylene random copolymers with a content of ethylene from 7 to 21 mol % were used as matrices to prepare single‐walled carbon nanotube (SWCNT) nanocomposites in a range of SWCNT concentration from 0.15 to 1 wt %. The solution blending and melt‐ compression molding procedures were kept identical for all nanocomposites. The poly(propylenes) have crystallinities ranging from 70 to 10%, and serve to test the role of SWCNTs acting as nucleants to preserve in the nanocomposites the uniform dispersion of SWCNTs after sonication. The major role of polymer crystallinity is to mediate toward a more open and more connected SWCNT network structure. Fast nucleation and growth of high crystalline matrices on multiple sites along the surface of the nanotubes prevents SWCNT clustering, and entraps the SWCNT network between the semicrystalline structure reducing the driving force of nanotubes to curl and twist. Depletion of crystallites in the less crystalline matrices (<35% crystallinity) leads to curled and poorly connected nanotubes. A consequence of the gradual loss of SWCNT connectivity is a decreased electrical conductivity; however, the change with crystallinity is not linear. Conductivity decreases sharply with decreasing crystallinity for SWCNT contents near the percolation region, while for contents approaching the plateau region the electrical conductivity is less sensitive to matrix crystallinity. The percolation threshold decreases rapidly for polymers with <~30% crystallinity and slowly levels off at crystallinities >~40%. At SWCNT concentrations of 0.15 wt %, SEM images of nanocomposites with the highest crystallinity matrix indicate debundled and interconnected nanotubes, whereas more disconnected and curled SWCNTs remain in the lowest crystallinity nanocomposites. Electrical conductivity in the former is relatively high, whereas the latter are insulators. Also discussed is the nucleating effect of nanotubes and restrictions of the filler to polymer chain diffusion in the crystallization of the polymers. SEM images and Raman spectra in the radial breathing modes region (100–400 cm?1) are complementary tools to extract the quality and details of the SWCNT dispersion in the nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2084–2096, 2010  相似文献   
999.
    
The crystallization and melting behaviors of poly (vinylidene fluoride) (PVDF) with small amount of nanoparticles (1 wt %), such as montmorillonite (MMT), SiO2, CaCO3, or polytetrafluoroethylene (PTFE), directly prepared by melt‐mixing method were investigated by scanning electron microscopy (SEM), polarizing optical microscopy, Fourier transform infrared spectroscopy, wide angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC). The nanoparticle structure and the interactions between PVDF molecule and nanoparticle surface predominated the crystallization behavior and morphology of the PVDF. Small amount addition of these four types of nanoparticles would not affect the original crystalline phase obtained in the neat PVDF sample (α phase), but accelerated the crystallization rate because of the nucleation effect. In these four blend systems, MMT or PTFE nanoparticles could be well applied for PVDF nanocomposite preparation because of stronger interactions between particle surface and PVDF molecules. The nucleation enhancement and the growth rate of the spherulites were decreased in the order SiO2 > CaCO3 > PTFE > MMT. The melting and recrystallization of PVDF was found in MMT addition sample, because of the special ways of ordering of the PVDF chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
1000.
    
Poly(butylene succinate) (PBSu) and two poly(butylene succinate‐co‐propylene succinate)s were synthesized via the direct polycondensation reaction. The copolyesters were characterized as having 7.0.and 11.5 mol % propylene succinate (PS) units, respectively, by 1H NMR. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) adopted to study the nonisothermal crystallization of these polyesters at a cooling rate of 1, 2, 3, 5, 6, and 10 °C/min. Morphology and the isothermal growth rates of spherulites under PLM experiments were monitored and obtained by curve‐fitting. These continuous rate data were analyzed with the Lauritzen?Hoffman equation. A transition of regime II → III was found at 95.6, 84.4, and 77.3 °C for PBSu, PBPSu 95/5, and PBPSu 90/10, respectively. DSC exothermic curves show that all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Ozawa, Mo, Friedman, and Vyazovkin equations. All the results of PLM and DSC measurements indicate that incorporation of minor PS units into PBSu markedly inhibits the crystallization of the resulting polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1299–1308, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号