首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10284篇
  免费   1221篇
  国内免费   674篇
化学   2693篇
晶体学   165篇
力学   1719篇
综合类   113篇
数学   2278篇
物理学   5211篇
  2024年   14篇
  2023年   92篇
  2022年   211篇
  2021年   255篇
  2020年   287篇
  2019年   257篇
  2018年   270篇
  2017年   315篇
  2016年   281篇
  2015年   276篇
  2014年   367篇
  2013年   881篇
  2012年   482篇
  2011年   574篇
  2010年   449篇
  2009年   592篇
  2008年   538篇
  2007年   570篇
  2006年   612篇
  2005年   498篇
  2004年   487篇
  2003年   449篇
  2002年   430篇
  2001年   341篇
  2000年   341篇
  1999年   256篇
  1998年   278篇
  1997年   245篇
  1996年   198篇
  1995年   163篇
  1994年   146篇
  1993年   125篇
  1992年   140篇
  1991年   72篇
  1990年   94篇
  1989年   65篇
  1988年   80篇
  1987年   63篇
  1986年   60篇
  1985年   60篇
  1984年   46篇
  1983年   20篇
  1982年   47篇
  1981年   25篇
  1980年   17篇
  1979年   18篇
  1978年   29篇
  1977年   11篇
  1976年   14篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
An experimental study was performed to understand the nucleate boiling heat transfer of water–CuO nanoparticles suspension (nanofluids) at different operating pressures and different nanoparticle mass concentrations. The experimental apparatus is a miniature flat heat pipe (MFHP) with micro-grooved heat transfer surface of its evaporator. The experimental results indicate that the operating pressure has great influence on the nucleate boiling characteristics in the MFHP evaporator. The heat transfer coefficient and the critical heat flux (CHF) of nanofluids increase greatly with decreasing pressure as compared with those of water. The heat transfer coefficient and the CHF of nanofluids can increase about 25% and 50%, respectively, at atmospheric pressure whereas about 100% and 150%, respectively, at the pressure of 7.4 kPa. Nanoparticle mass concentration also has significant influence on the boiling heat transfer and the CHF of nanofluids. The heat transfer coefficient and the CHF increase slowly with the increase of the nanoparticle mass concentration at low concentration conditions. However, when the nanoparticle mass concentration is over 1.0 wt%, the CHF enhancement is close to a constant number and the heat transfer coefficient deteriorates. There exists an optimum mass concentration for nanofluids which corresponds to the maximum heat transfer enhancement and this optimum mass concentration is 1.0 wt% at all test pressures. The experiment confirmed that the boiling heat transfer characteristics of the MFHP evaporator can evidently be strengthened by using water/CuO nanofluids.  相似文献   
12.
The thermochemical transformation of electrostatically formed complexes of methyl orange (MO) with polycations containing primary amine groups such as ammonium salts afforded new polymers with a high concentration of covalently bound 4‐N,N‐dimethylaminoazobenzene groups in the side chain. Poly(allylamine hydrochloride) and poly(β‐aminoethylene acrylamide hydrochloride) were employed as support polycations for MO. The transformation of sulfonate–ammonium ion pairs into sulfonamide bonds, via heating at an elevated temperature, was supported by the polymer properties before and after the thermal treatment. The polymer structure changes were monitored with elemental analysis, Fourier transform infrared, 1H NMR, and ultraviolet–visible absorption spectroscopy, and thermogravimetric analysis. The spacer length between the backbone and azobenzene structures used as side chains strongly influenced the polymer properties before and after the heat‐induced reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5898–5908, 2006  相似文献   
13.
Enthalpies of solution have been measured from 5 to 85°C for aqueous tetraethyl- and tetrapropylammonium bromides, and the integral heat method is employed to evaluate for these electrolytes over a wide temperature range. Data taken from the literature have been used to evaluate for aqueous Bu4NBr over a similar temperature range. These data, along with similar data for Me4NBr, previously reported, have been used to evaluate absolute ionic heat capacities. While the absolute values agree only qualitatively with two other methods of division, the temperature dependences of the three methods essentially agree up to 65°C. Heat capacities due to structural effects on the solvent, obtained by subtracting the inherent heat capacities of the ions, are extraordinarily positive for all four tetraalkylammonium ions and have negative temperature coefficients, indicating that all four ions, including the tetramethylammonium ion, are structure-making ions.  相似文献   
14.
Apparent molal heat capacities of some piperidine, morpholine, and piperazine derivatives in aqueous solution have been determined by adiabatic calorimetry in the temperature range 20–55°C and in the molality range 0.2–1m. Comparison of experimental values with those calculated through group contributions, found for monofunctional compounds, indicates strong interactions between the hydrophilic centers. An interpretation is given of the possible mechanism of this interaction. Also, values of ΔC p for the addition reaction of proton to nitrogen centers of mono- and bifunctional organic compounds are examined.  相似文献   
15.
The thermodynamic quantities associated with ionization of the N1 and N9 protons of adenine have been calorimetrically determined as a function of temperature. The H values for proton dissociation of these groups, with pK values of 4.19 and 9.92, were found to be 5.1 and 9.1 kcal/mole, respectively, at 25°C, =0.025. The C p values for proton dissociation of these groups were estimated to be –11 and –17 cal/mole-deg. These results indicate that the large heat capacity changes observed during conformational transitions of polynucleotides are not the result of ionization of the bases.  相似文献   
16.
An evaluation of measurements of heat capacities by modulated differential scanning calorimetry, MDSC is presented. Heat capacities were obtained from 130 to 550 K by a non isothermal technique in which a periodic modulation was added to the linear heating rate. Effects of amplitude and period of modulation, sample weight, sample type, pan type, and cell imbalance are described. Results are compared with those obtained using the isothermal technique. Heat capacity could be measured well into the decomposition region and separated from the non reversing signal due to chemical reaction (degradation), thus allowing a precise detection of onsets of the thermal degradation. This additional information will aid in the interpretation of the degradation chemistry, a field vital for the petroleum-industry.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayPart of this paper was presented at the 23rd Conference of the North American Thermal Analysis Society, Toronto, Canada, September 25–28, 1994.The author (MVN) acknowledges the experimental assistance provided by J. Balogh of Exxon Research and Engineering Company, Linden. Helpful discussions with A. Boller of the University of Tennessee at Knoxville, Dr. Y. Jin, General Electrical, and Dr. S. Sauerbrunn formerly of TA Instruments are also acknowledged.  相似文献   
17.
A survey is given of recent experimental results obtained from high-temperature, high-pressure investigations with water, aqueous solutions, and ionic fluids. Data on the static dielectric constant of water to 550°C and 5 kbar are given and discussed with respect to their relation to water structure. Infrared and Raman spectra of HDO in pure water have been obtained to 400°C and 4 kbar, which give information on hydrogen bonding. Xe–H2O and CO2–H2O mixtures were investigated in the infrared. Ni(II) and Cu(II) complexes were investigated by absorption spectroscopy in aqueous solutions of high chloride content to 350°C and 2–6 kbar. The gas-liquid critical point of ammonium chloride was found at 880°C and 1635 bars. This fluid appears to be predominantly ionic even in the critical region. The possibility of converting pure polar fluids such as ammonia and water into concentrated ionic solutions by self-ionization at very high pressures is mentioned.This paper was presented at the symposium, The Physical Chemistry of Aqueous Systems, held at the University of Pittsburgh, Pittsburgh, Pennsylvania, June 12–14, 1972, in honor of the 70th birthday of Professor H. S. Frank.  相似文献   
18.
We introduce a new Monte Carlo algorithm for the self-avoiding walk (SAW), and show that it is particularly efficient in the critical region (long chains). We also introduce new and more efficient statistical techniques. We employ these methods to extract numerical estimates for the critical parameters of the SAW on the square lattice. We find=2.63820 ± 0.00004 ± 0.00030=1.352 ± 0.006 ± 0.025v=0.7590 ± 0.0062 ± 0.0042 where the first error bar represents systematic error due to corrections to scaling (subjective 95% confidence limits) and the second bar represents statistical error (classical 95% confidence limits). These results are based on SAWs of average length 166, using 340 hours CPU time on a CDC Cyber 170–730. We compare our results to previous work and indicate some directions for future research.  相似文献   
19.
Excess molar volumes V E and excess molar heat capacities C P /E at constant pressure have been obtained, as a function of mole fraction x1, for several binary liquid mixtures belonging either to series I: pyridine+n-alkane (ClH2l+2), with l=7, 10, 14, 16, or series II: piperidine+n-alkane, with l=7, 8, 10, 12, 14. The instruments used were a vibrating-tube densimeter and a Picker flow microcalorimeter, respectively. V E of pyridine+n-heptane shows a S-shaped composition dependence with a small negative part in the region rich in pyridine (x1>0.90). All the other systems show positive V E only. The excess volumes increase with increasing chain length l of the n-alkane. The excess molar heat capacities of the mixtures belonging to series II are all negative, except for a small positive part for piperidine+n-heptane in the region rich in piperidine (x1>0.87). The C P /E at the respective minima, C P /E (x1,min ), become more negative with increasing l, and the x1,min values range from about 0.26 (l=7) to 0.39 (l=14). Most interestingly, mixtures of series I exhibit curves of C P /E against x1 with two minima and one maximum, the so-called W-shape curves.Dedicated to Professor A. Néckel on the occasion of his 65th birthday. Communicated in part at the XVIIèmes Journées de Calorimétrie, d'Analyse Thermique et de Thermodynamique Chimique, Ferrara, Italy, 27–30 October, 1986.  相似文献   
20.
The adsorption equilibrium of water on microporous adsorbents (zeolites of NaA-, NaY- and NaX-type as well as their ion exchanged forms) and on mesoporous adsorbents (different silica gels and composite material i.e. silica gel + salt hydrate) has been studied experimentally and theoretically. Using the Dubinin theory of pore filling the characteristic curves of the adsorption systems and other relevant dependences such as isotherms, isobars, isosteres and the curve of the differential heat of adsorption were calculated. For all systems investigated the adsorption were calculated. Aads and the desorption potential Ades of the closed heat storage system were estimated. These values define the working range of the adsorption/desorption cycle and allow to calculate the specific heat storage density Δ hsp. On the basis of Δ hsp the different adsorbents were compared in order to select the optimal porous storage material for a given application. The presented experimental and theoretical investigations show that the adsorption systems water-zeolite and water-composites are promising working pairs for thermochemical heat storage processes for hot tap water supply and space heating of single family dwellings. The advantage of the water-composite system is the low desorption temperature (solar energy) the main shortcoming the low temperature lift. The advantage of the water zeolite system is the high temperature lift, the shortcoming are the relative high desorption temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号