首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3477篇
  免费   632篇
  国内免费   364篇
化学   1278篇
晶体学   46篇
力学   287篇
综合类   97篇
数学   358篇
物理学   2407篇
  2024年   20篇
  2023年   50篇
  2022年   180篇
  2021年   180篇
  2020年   134篇
  2019年   97篇
  2018年   102篇
  2017年   167篇
  2016年   186篇
  2015年   128篇
  2014年   207篇
  2013年   241篇
  2012年   187篇
  2011年   251篇
  2010年   175篇
  2009年   191篇
  2008年   196篇
  2007年   231篇
  2006年   229篇
  2005年   173篇
  2004年   194篇
  2003年   144篇
  2002年   170篇
  2001年   123篇
  2000年   93篇
  1999年   100篇
  1998年   75篇
  1997年   41篇
  1996年   31篇
  1995年   27篇
  1994年   25篇
  1993年   24篇
  1992年   17篇
  1991年   13篇
  1990年   7篇
  1989年   7篇
  1988年   14篇
  1987年   7篇
  1986年   11篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有4473条查询结果,搜索用时 15 毫秒
71.
高光谱成像技术的柑橘植株叶片含氮量预测模型   总被引:11,自引:0,他引:11  
氮素是果树生长发育的一种大量必需元素,及时准确地监控果树的氮营养状况,对果树的合理施肥、增产、优化果实品质以及减缓过量施氮引起的水资源污染具有重要意义。利用高光谱成像技术结合多变量统计学方法,建立了柑橘植株叶片的含氮量预测模型。研究步骤为:高光谱扫描、提取平均光谱曲线、预处理原始光谱数据、采用连续投影法提取特征波段和建立含氮量预测模型。从SG平滑、SNV、MSC、1-Der等11种预处理方法中筛选出的较优预处理方法是SG平滑、Detrending和SG平滑-Detrending。对应这三种最优预处理方法,先采用连续投影法挑选出各自的特征波长,然后将各特征波段下的光谱反射率作为偏最小二乘、多元线性回归和反向传播人工神经网络模型的输入,各自建立三个预测模型。从以上获得的9个预测模型中,得出两个最优模型SG平滑-Detrending-SPA-BPNN(Rp:0.851 3,RMSEP:0.188 1)和Detrending-SPA-BPNN(Rp:0.8609,RMSEP:0.159 5)。结果表明,利用高光谱数据测定柑橘叶片含氮量具有可行性。这为实时、准确地监控柑橘植株生长过程中叶片含氮量的变化以及合理科学的氮肥施加提供了一定的理论基础。  相似文献   
72.
通过研究法国实验客体(FTO)的闪光照相过程,设计了静态照相过程中采用的准直措施,除传统的一二级准直体外,还通过添加三级准直体来进一步控制入射到客体边缘部分的X射线,从而降低散射的影响。蒙特卡罗方法模拟结果表明,采用三级准直技术可以有效地控制散射的影响,图像接收平面各边界的直散比有了明显的提升。  相似文献   
73.
介绍了一种电气绝缘柔软复合材料——DMD膜,通过对膜结构的分析,设计了一种串联等效电路模型对其进行分析。运用该模型,对DMD膜在浸渍前和浸渍后两种情况下的介电常数和介电强度进行了求解并给出计算公式。从公式可以看出:DMD膜的介电常数在浸渍前后有明显的变化,浸渍后的介电常数得到了显著的提高,并且变化率较小;浸渍后DMD膜的介电强度高于未浸渍DMD膜的介电强度。当浸渍料介电常数愈大,聚酯材料上承受的电场强度愈大,浸渍料上承受的电场强度愈小,由于聚酯材料的耐压强度很高,所以整个传输线的介电强度得到提高。  相似文献   
74.
 固体激光的一个重大发展方向和目标是实现“三高”(高平均功率、高光束质量和高效率)激光同时输出,结合相关研究工作和进展,着重论述了固体激光输出功率和光束质量的关系,给出了功率升高、光束质量非线性下降是当前“三高”固体激光研究的一个基本科学技术问题。围绕这一基本问题,评述了一些重要技术途径和手段,并探讨了实现高平均功率高光束质量固体激光输出的可能有效途径。  相似文献   
75.
利用离子束溅射诱导实验方法,在单晶Si(100)基底上辅助沉积银膜,研究了低能Ar+离子束30°入射时,不同离子束能量和束流密度以及基底温度对Ag纳米结构的影响.结果表明:在较低基底温度下(32~100℃)辅助沉积银膜,膜层表面会呈现排列紧密、晶粒尺寸一致的金字塔状纳米结构.当温度升高时(32~200℃),纳米微结构横向尺寸λc迅速增加,而粗糙度先减小(32~100℃)后迅速增大(100~200℃);当离子束能量1 400eV、束流密度15~45μA/cm2时,在相同温度下,随着离子束束流密度的增大,纳米晶粒横向尺寸基本不变,粗糙度略有增加;当离子束流密度为15μA/cm2、能量1 000~1 800eV时,在相同温度下,随着离子束能量的增加,银纳米结构尺寸增加,而表面粗糙度先增加,然后缓慢减小.自组织纳米结构的转变是溅射粗糙化和表面驰豫机制相互作用的结果.  相似文献   
76.
基于主偏振态理论和一阶偏振模色散近似,推导出光信号偏振度的一个简洁解析表达式。并利用该解析表达式和快速傅里叶变换,对20Gb/s系统的偏振模色散补偿中,偏振度监测法的灵敏度和跟踪范围受多种因素(如脉冲啁啾、占空比、消光比、放大自发辐射噪声、自相位调制等)的影响程度进行了数值模拟分析。发现利用偏振度监测法反馈控制偏振模色散补偿时,监测灵敏度和跟踪范围是折中的,较小的占空比有利于提高偏振度监测法的灵敏度,而且总可以对高达1.5个位周期(75ps)的差分群延时进行跟踪,但当占空比低于0.5时,跟踪范围迅速缩小,消光比和放大自发辐射噪声不会明显改变偏振度监测法的跟踪范围,自相位调制效应显著地影响偏振度监测法的性能。  相似文献   
77.
对拟在HIRFL-CSRm上建造的纵向Palmer冷却进行了数值优化计算,得出了最佳带宽、最佳增益及最短冷却时间,并运用Fokker-Planck方程进行了模拟,得到了动量散度分布函数在冷却过程中随时间的变化,从而为纵向冷却系统的具体设计和优化提供了重要的理论依据.  相似文献   
78.
利用超临界流体二氧化碳萃取技术提取中药虎杖、大黄、炒白术中黄酮类化合物。在pH8.2的HCl—tris缓冲溶液中利用邻苯三酚自氧化法测定提取物对超氧阴离子自由基的消除作用。用茜素紫作显色剂的分光光度法在pH9.0的HCl—tris缓冲体系中测定中药提取物对Co^2 H2O2体系所产生的羟基自由基的消除作用,并对实验条件进行了探讨。实验结果表明,3种中药提取物对自由基都有消除作用,其中虎杖的效果最好。  相似文献   
79.
Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex microfabricated trap arrays. Several groups are also actively pursuing quantum interfacing of trapped ions with photons.   相似文献   
80.
高功率窄脉宽半导体激光激励器设计   总被引:2,自引:0,他引:2  
为了获得高功率窄脉宽半导体激光,设计了半导体激光器相应的激励单元,论述MOSFET作为高速开关的工作机理,分析基于MOSFET作为高速开关产生窄的大电流脉冲的电路模型.为了使MOSFET开关速度尽可能快,根据前述分析,提出推挽式MOSFET栅极驱动方式并设计了触发窄脉冲的发生电路.当激光二极管接入放电回路时,实验表明:激光二极管输出光的峰值功率可达67.5 W,脉宽约为20 ns.最后,简要分析了影响光脉冲宽度的因素.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号