首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6595篇
  免费   1040篇
  国内免费   1518篇
化学   3783篇
晶体学   326篇
力学   1608篇
综合类   79篇
数学   612篇
物理学   2745篇
  2024年   17篇
  2023年   75篇
  2022年   165篇
  2021年   187篇
  2020年   240篇
  2019年   187篇
  2018年   178篇
  2017年   324篇
  2016年   354篇
  2015年   214篇
  2014年   380篇
  2013年   566篇
  2012年   342篇
  2011年   499篇
  2010年   352篇
  2009年   406篇
  2008年   478篇
  2007年   489篇
  2006年   485篇
  2005年   446篇
  2004年   392篇
  2003年   347篇
  2002年   279篇
  2001年   274篇
  2000年   246篇
  1999年   200篇
  1998年   156篇
  1997年   185篇
  1996年   141篇
  1995年   113篇
  1994年   104篇
  1993年   77篇
  1992年   48篇
  1991年   48篇
  1990年   39篇
  1989年   21篇
  1988年   20篇
  1987年   22篇
  1986年   15篇
  1985年   8篇
  1984年   10篇
  1982年   4篇
  1980年   2篇
  1979年   6篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1957年   2篇
排序方式: 共有9153条查询结果,搜索用时 359 毫秒
991.
The implementation of a heating element to a composite gasket for high-temperature applications in the diamond-anvil cell was developed based on a double-gasket assemblage. The heating element is a thin platinum wall that covers the central borehole of the metal–ceramic–metal composite gasket and interconnects the two metal component parts of the gasket. Applying electric powers up to 35 W to the two gasket metal components result in ring-like heating around the sample inside the pressure chamber with temperatures exceeding ~2000 K in individual cases. The ring-like distribution of the maximum temperature located at the pressure-chamber wall facilitates a homogeneous temperature distribution at the sample position. As a consequence of the concentration of the heating power to the pressure chamber region, gradients of surface temperatures, both at the gasket and the diamond anvil, appear to be more pronounced compared with those known for classical external electrical heating. Apart from the tests of the mechanical stability on high-pressure operation in the diamond anvil cell at room temperature, the influence of the anvils in contact with the gasket on the characteristic power–temperature curves, temperature gradients and thermal equilibration resulting from changes in electrical power settings have been evaluated within the scope of a series of experimental investigations.  相似文献   
992.
《Composite Interfaces》2013,20(5):309-329
Chemically functionalized maleic anhydride (MAH)-grafted polypropylene matrix has been used (in place of polypropylene as matrix with compatibilizer) to process banana fiber/chemically functionalized polypropylene (BF/CFPP) composites, without using any compatibilizer and without any fiber modification by Palsule process. Fiber/matrix interfacial adhesion generated, in-situ, due to interactions between BF and the MAH of the CFPP matrix has been established by Fourier transform infrared spectroscopy and scanning electron microscopy. Mechanical properties of the BF/CFPP composites developed by Palsule process with in-situ fiber/matrix interfacial adhesion in this study have been found to be higher than those of the matrix and it increases with increasing amounts of fibers in composites, and are better than properties of literature reported BF/polypropylene composites processed with compatibilizers. Measured modulus of BF/CFPP composites compares well with values predicted by rule of mixtures, Hrisch model, Halpin-Tsai equations and its modified Nielsen version, and with Palsule equation. The feasibility of developing natural fiber/MAH grafted polyolefin composites by Palsule process without using any compatibilizer and without any fiber treatment is demonstrated.  相似文献   
993.
《Composite Interfaces》2013,20(8):749-770
The large wind turbines blades with multi-ton composite structures are mostly connected to the peach-bearings flanges using T-bolt joints which induce shear and bearing stress fields around the cross bolts. The significant differences between the modulus of elasticity of metallic bolts and composite surrounding materials cause stress concentration around interfaced zones and, also, limit the load capacity of the joints. In the present research, a pseudo functionally graded material (PFGM) as an interlayer is used around the cross bolts to examine the reduction of the stress concentration. Some radial variation of the mechanical properties would be considered for this interlayer. The finite element method is used to analyze the structures. Loadings are applied to the center of the cross bolts analogous to the real cases. Both the static and dynamic loadings are studied. For the finite element of the functionally graded material interlayer, a multilayer alternative material with constant properties in each layer is used. The results show that using an isotropic single layer with an average modulus of elasticity and specific thickness decreases the stress concentration of the composite part up to 47%. The various property models for the interlayer also show that an appropriated model can decrease the stress concentration up to 55%. Dynamic transient analyses would be implemented over the joint structure and improved considering to the practical cases. Using the PFGM interlayer decreases the constant and variable parts of the stresses up to 55% and also causes significant increasing of the joint fatigue life.  相似文献   
994.
《Composite Interfaces》2013,20(5):451-466
Sheath-core type bicomponent fibers of polypropylene (PP) as a sheath component and thermotropic liquid crystalline polymer (TLCP) as a core component were prepared by the highspeed melt spinning process. Continuous fiber reinforced thermoplastic composites, in which TLCP acts as a reinforcing fiber and PP as a matrix polymer, were fabricated by the compression molding of these fibers. In the melt spinning, the attainable highest take-up velocity of TLCP was improved by co-processing with PP. Tensile modulus and strength of the TLCP component in the PP/TLCP bicomponent fibers increased with an increase in the take-up velocity. Comparison of wide-angle X-ray diffraction patterns of starting bicomponent fibers and fabricated composites indicated that the orientation relaxation of TLCP did not occur in the compression molding process. Accordingly, the tensile modulus and strength of the PP/TLCP composites were similar to those of the bicomponent fibers. Continuous fiber reinforced thermoplastic composites with various types of fiber content distributions were fabricated from the bicomponent fibers in which sheath-core composition was changed gradually in the spinning process. In the three-point bending test, the composites with two different types of symmetric structural gradients, one with higher TLCP fiber content near the surfaces than in the center and the other with higher TLCP content in the center than near the surfaces, exhibited different flexural moduli even though the overall TLCP contents were comparable. In the three-point bending test of a composite with asymmetric structural gradient, the yielding behavior and maximum flexural load varied depending on the direction of load application although the initial flexural moduli were similar.  相似文献   
995.
《Composite Interfaces》2013,20(3):257-275
Viscous and elastomeric silicones have been applied as interlayers to carbon fibers in order to develop a tougher, micro-crack resistant, thermally stable polyimide (PMR-15) composite. Carbon fiber is continuously coated with very high molecular weight polydimethylsiloxane (PDMS) and polyvinyl-methylsiloxane (PVMS). Dynamic mechanical properties of the composites have been determined and compared with uncoated carbon fiber reinforced PMR-15 polyimide composites. The presence of the interlayer is shown by the appearance of a new relaxation peak. The peak temperature is found to be a good indication of the degree of the cure of the silicone elastomer. Comparison of the storage moduli of uncoated and coated carbon fiber composites at the service temperature range of the composites indicates that the presence of the silicone interlayer affects the shear moduli of the composites. Apparent activation energy of the α transition of the matrix in the modified composites varies with the amount of interlayer and composition in concert with the impact strength.  相似文献   
996.
《Composite Interfaces》2013,20(6):429-445
During a fiber pull-out test, it is desirable to analyze the stress profiles along the embedded fiber directly within the same time scale as the normal pull-out tests. In the present study, the axial tensile stress profiles of the fiber in a model composite are measured during the single-fiber pull-out tests by using stress birefringence of the fiber. It is concluded from the analysis of the measured stress profiles that an effective radius of matrix, i.e. a radius defining the region of the matrix where the major deformation takes place, is not constant but is an increasing function of the interfacial shear stress. By incorporating the variable values of the effective radius of matrix into the shear-lag model, the axial tensile and the interfacial shear stress profiles are calculated. To accurately estimate the interfacial shear strength, the stress distribution along the embedded fiber and the variability of the effective radius of matrix should be taken into account instead of calculating the interfacial shear strength simply from the pull-out stress and the embedded length.  相似文献   
997.
《Composite Interfaces》2013,20(2):151-165
This study compared bony fusion in autologous bone grafting with HA/ZrO2 graded composite in terms of mineral depositions, histological characteristics, and biomechanical properties of bonding interface. Twenty-four beagle dogs were established four places of bone defect in two adjacent lumbar vertebral bodies (L4 and L5) and were successively implanted with HA/ZrO2 graded composite (group A), HA/ZrO2 unilayer composite (group B), pure ZrO2 (group C), and pure HA (group D). After operation, lumbar vertebral specimens were respectively harvested per time at week 6, 12, and 16. Then, the bony fusion interface was evaluated by fluorescence microscope and computer image analysis system to measure mineral apposition rates (MAR). Histological analysis of specimen was used to determine bone bonding rates (BBR) and possible foreign body reactions associated with each groups. And interface bonding force between implant and autogenous bone was quantified with biomechanical push-out test. Compared with other groups, group A led to significantly higher MAR from week 6 to 12 (p < 0.05). Histologically, new bony tissue and hyaline cartilage were seen around the HA/ZrO2 graded composite, accompanied by mild chronic inflammation. And the BBR of HA/ZrO2 graded composite were the highest (p < 0.05), while reaching (90.3 ± 3.8) % at week 16. Moreover, the biomechanical push-out tests revealed that the maximum interface shear strength of group A was respectively (2.64 ± 0.16) MPa, (2.95 ± 0.19) MPa, and (3.45 ± 0.23) MPa at week 6, 12, and 16, which all possessed significantly statistical differences with other three groups (p < 0.05).  相似文献   
998.
《Composite Interfaces》2013,20(5-6):459-477
A simplified calculation method for study of the growth of interfacial debonding between elastic fiber and elastic matrix ahead of the notch-tip in composites under displacement and stress controlled conditions was presented based on the shear lag approach in which the influences of residual stress and frictional shear stress at the debonded interface were incorporated. The calculation method was applied to a model two-dimensional composite. An outline is given of the difference and similarity in the growing behavior of the debonding between the displacement and stress controls, and of the influences of the residual stresses, frictional shear stress, the nature of the final cut component (fiber or matrix) and sample length on the debonding behavior.  相似文献   
999.
《Composite Interfaces》2013,20(2):143-156
The mechanism of interfacial failure occurring as a consequence of the stress concentration induced by a matrix crack located in the vicinity of the interface is analysed. For this purpose, an asymptotic analysis is carried out to assess the competition between the propagation of the matrix crack towards the interface and the nucleation of an interfacial debond. An energetic approach provides a necessary condition comparing the ratio of the interfacial toughness over the matrix toughness to a critical value depending on the elastic mismatch between the fibre and the matrix and the ratio of the interfacial nucleation length over the width of the matrix ligament. Presented results show that the interfacial debonding is enhanced if the matrix is softer than the fibre. Further, a modified condition which does not involve the crack increment ratio is established if the matrix crack lies in the stiffest material.  相似文献   
1000.
With the expansion of human activities, there are more and more living areas adjacent to industrial and/or agricultural activities such as chemical processes, petroleum processes, paint finishing, food processing, livestock farming, composting plants etc. Bad odor is part of several nuisances caused by industrial and/or agricultural activities. Hydrogen sulfide (H2S) is a typical odorous molecule which causes foul odor at very low concentration. This molecule is formed in different industrial installations, in particular in coal combustion, and petrochemical refinery. The separation and/or transformation of H2S from gas phase to odorless products are important processes for sustainable development. In this paper, we communicate the preparation of new sorbents for the sorption of H2S from a synthetic gas effluent. These sorbents consist in an inorganic phase (hydroxyapatite) as host particles, and well-dispersed particles of a metal oxide as guest particles which are the active phase for the removal of H2S. At room conditions, iron, lead, and zinc doped calcium phosphates were found to be effective for the removal of H2S. The performance of the sorbents depends on preparation method and the nature of active phases. This opens new prospects for the treatment of H2S from gas phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号