首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3942篇
  免费   364篇
  国内免费   68篇
化学   97篇
晶体学   7篇
力学   1308篇
综合类   19篇
数学   822篇
物理学   2121篇
  2024年   16篇
  2023年   40篇
  2022年   38篇
  2021年   59篇
  2020年   145篇
  2019年   133篇
  2018年   89篇
  2017年   106篇
  2016年   86篇
  2015年   119篇
  2014年   196篇
  2013年   228篇
  2012年   146篇
  2011年   236篇
  2010年   178篇
  2009年   222篇
  2008年   271篇
  2007年   224篇
  2006年   219篇
  2005年   171篇
  2004年   166篇
  2003年   172篇
  2002年   150篇
  2001年   109篇
  2000年   107篇
  1999年   78篇
  1998年   89篇
  1997年   71篇
  1996年   68篇
  1995年   52篇
  1994年   42篇
  1993年   45篇
  1992年   40篇
  1991年   48篇
  1990年   23篇
  1989年   27篇
  1988年   22篇
  1987年   20篇
  1986年   18篇
  1985年   26篇
  1984年   18篇
  1983年   6篇
  1982年   17篇
  1981年   7篇
  1980年   7篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   6篇
  1971年   2篇
排序方式: 共有4374条查询结果,搜索用时 46 毫秒
201.
For the shallow water equations in the first approximation (Saint-Venant equations), a TVD scheme is developed for shock-capturing computations of open channel flows with discontinuous waves. The scheme is based on a special nondivergence approximation of the total momentum equation that does not involve integrals related to the cross-section pressure force and the channel wall reaction. In standard divergence difference schemes, most of the CPU time is spent on the computation of these integrals. Test computations demonstrate that the discontinuity relations reproduced by the scheme are accurate enough for actual discontinuous wave propagation to be numerically simulated. All the qualitatively distinct solutions for a dam collapsing in a trapezoidal channel with a contraction in the tailwater area are constructed as an example.  相似文献   
202.
The acoustic radiation force resulting from acoustic waves have been extensively studied for the contact-free generation of organized patterning arrays. The precise arrangement of microscopic objects clustered at the pressure nodes is critical to the development of functional structures and patterned surfaces. However, the size of the clusters is restricted by the saturation limit of the acoustic nodes. Here, we present a bulk acoustic wave (BAW) platform, which employs a two-dimensional acoustic wave to propel particles of various sizes. Experimentally, when particles are large, significant acoustic energy is scattered and partly absorbed by the matched layers in front of the sensors. The acoustic radiation force from a convergent acoustic pressure field agglomerates the large polystyrene (PS) particles towards the central region instead of the pressure nodes. The parametric analysis has been performed to assess the transition in the particles from clustering at the organized nodal arrays to agglomerating in the central region, which is a function of particle size, particle concentration, and load voltage. Statistically, the particles can agglomerate with a cluster ratio greater than 70%, and this ratio can be improved by increasing the load power/voltage supplied to the transducers. With its ability to perform biocompatible, label-free, and contact-free self-assembly, this concept offers a new possibility in the fabrication of colloidal layers, the recreation of tissue microstructure, the development of organoid spheroid cultures, the migration of microorganisms, and the assembly of bioprinting materials.  相似文献   
203.
Layered transition metal dichalcogenides (TMDs) are a diverse group of materials whose properties vary from semiconducting to metallic with a variety of many body phenomena, ranging from charge density wave (CDW), superconductivity, to Mott-insulators. Recent interest in topologically protected states revealed also that some TMDs host bulk Dirac- or Wyle-semimetallic states and their corresponding surface states. In this review, we focus on the synthesis of TMDs by vacuum processes, such as molecular beam epitaxy (MBE). After an introduction of these preparation methods and categorize the basic electronic properties of TMDs, we address the characterization of vacuum synthesized materials in their ultrathin limit-mainly as a single monolayer material. Scanning tunneling microscopy and angle resolved photoemission spectroscopy has revealed detailed information on how monolayers differ in their properties from multi-layer and bulk materials. The status of monolayer properties is given for the TMDs, where data are available. Distinct modifications of monolayer properties compared to their bulk counterparts are highlighted. This includes the well-known transition from indirect to direct band gap in semiconducting group VI-B TMDs as the material-thickness is reduced to a single molecular layer. In addition, we discuss the new or modified CDW states in monolayer VSe2 and TiTe2, a Mott-insulating state in monolayer 1T-TaSe2, and the monolayer specific 2D topological insulator 1T′-WTe2, which gives rise to a quantum spin Hall insulator. New structural phases, that do not exist in the bulk, may be synthesized in the monolayer by MBE. These phases have special properties, including the Mott insulator 1T-NbSe2, the 2D topological insulators of 1T′-MoTe2, and the CDW material 1T-VTe2. After discussing the pure TMDs, we report the properties of nanostructured or modified TMDs. Edges and mirror twin grain boundaries (MTBs) in 2D materials are 1D structures. In group VI-B semiconductors, these 1D structures may be metallic and their properties obey Tomonaga Luttinger quantum liquid behavior. Formation of Mo-rich MTBs in Mo-dichalcogenides and self-intercalation in between TMD-layers are discussed as potential compositional variants that may occur during MBE synthesis of TMDs or may be induced intentionally during post-growth modifications. In addition to compositional modifications, phase switching and control, in particular between the 1H and 1T (or 1T′) phases, is a recurring theme in TMDs. Methods of phase control by tuning growth conditions or by post-growth modifications, e.g. by electron doping, are discussed. The properties of heterostructures of TMD monolayers are also introduced, with a focus on lateral electronic modifications in the moiré-structures of group VI-B TMDs. The lateral potential induced in the moiré structures forms the basis of the currently debated moiré-excitons. Finally, we review a few cases of molecular adsorption on nanostructured monolayer TMDs. This review is intended to present a comprehensive overview of vacuum studies of fundamental materials' properties of TMDs and should complement the investigations on TMDs prepared by exfoliation or chemical vapor deposition and their applications.  相似文献   
204.
Measurements of the brightness temperature and compressibility of a dense silicon plasma formed by powerful shock waves (SWs) passing through a single-crystal sample have been carried out. Plane SWs were created using an explosive technique: the traditional plane acceleration of a steel driver plate made it possible to obtain pressures in silicon up to 133 GPa, and the use of “Mach” cumulative generators realized the pressures up to 510 GPa. The shock Hugoniot of silicon was determined by the impedance matching with α-quartz as the reference. The intensity of emitted thermal radiation was measured in the infrared range λ ∼ 1.5 μm, where silicon is optically transparent, and in the visible range of the spectrum. A significant (up to five times) understatement of the measured values of the brightness temperature in comparison with the values calculated by the equation of state was found. Taking into account the reflective properties of the SW in silicon does not lead to an agreement with the experiment. The estimates of relaxation processes behind the shock front suggest the presence of a zone of the establishment of ionization equilibrium with a width of ∼10 μm.  相似文献   
205.
Some of the main progress on the investigation of the mechanism of the wave formation in explosive welding at the Institute of Mechanics is summarized and others' previous works are reviewed. Our systematic experiments and analysis do not substantiate the theory of wave formation based on Karman vortex-street analogy or Helmholtz instability. On the contrary, they show that material strength insensitive to strain rate plays an important role. A simple hydro-plastic model is presented to explain the main features regarding the interfacial wave formation and to estimate the magnitude of wave length. The result is in broad agreement with experiment.  相似文献   
206.
Numerical simulations and laboratory measurements have been used to illuminate the interaction of a moving shock wave impacting on metallic grids at various shock strengths and grid solidities. The experimental work was carried out in a large scale shock tube facility while computational work simulated the flow field with a time-dependent inviscid and a time-dependent viscous model. The pressure drop measured across the grids is a result of two phenomena which are associated with the impact of the shock on the metallic grids. First are the reflection and refraction of the incoming shock on the grid itself. This appears to be the main inviscid mechanism associated with the reduction of the strength of the transmitted shock. Second, viscous phenomena are present during the reflection and refraction of the wave as well as during the passage of the induced flow of the air through the grid. The experimental data of pressure drop across the grid obtained in the present investigation are compared with those obtained from computations. The numerical results slightly overpredict the experimental data of relative pressure drop which increases substantially with grid solidity at fixed flow Mach numbers. The processes of shock reflection and refraction are continuous and they can be extended in duration by using thicker grids that will result in lower compression rates of the structural loading and increase the viscous losses associated with these phenomena which will further attenuate the impacting shock. Preliminary theoretical analysis suggests that the use of a graded porosity/solidity material will result in higher pressure drop than a constant porosity/solidity material and thus provide effective blast mitigation.   相似文献   
207.
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modelling of a large variety of astrophysical fluid flows in more than one dimension. Simulations of thermonuclear explosions in stars require, besides the hydrodynamic equations, a realistic equation of state, an energy source term, and a set of nuclear kinetic equations to follow the composition changes of the gas during the explosion. The implementation of a realistic stellar equation of state, and the coupling of hydrodynamics and nuclear burning are investigated in the framework of the simple shock tube geometry. We present and discuss the results of a series of SPH simulations of a detonation in the presence of (1) a single exothermic nuclear reaction, and (2) a restricted network of nuclear reactions. Our results are compared to those of identical simulations performed by other authors using a different hydrodynamic method.  相似文献   
208.
Working in the context of poroacoustics, we present new, physically relevant, explicit solutions to the Cauchy problem for the model we term the (1D) damped Riemann equation. The solitary waveforms that evolve from both Lorentzian (C-smooth) and symmetric-exponential (C0-smooth) initial conditions are analyzed, the focus being on wave overturning and the evolution/structure of the shocks which develop thereafter. In addition to those for both the multi- and single-valued forms of each solution, expressions for the shock amplitude, velocity, and critical values of the physical parameters are derived/compared. Lastly, links to other areas of continuum physics, and possible follow-on investigations, are noted.  相似文献   
209.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   
210.
The flow with a free-stream Mach number M = 6 around a cylindrical body with a sharp spike is studied. The existence of a supersonic reverse flow for one of the phases of the pulsating flow regime is experimentally validated. A range of spike lengths is determined, which ensures a region of a supersonic reverse flow near the side surface of the spike. The time of existence of the supersonic reverse flow region is shown to be 0.15 of the period of pulsations if the spike length equals the model diameter. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 30–39, July–August, 2007.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号