首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   957篇
  免费   182篇
  国内免费   154篇
化学   569篇
晶体学   106篇
力学   175篇
综合类   7篇
数学   20篇
物理学   416篇
  2024年   3篇
  2023年   5篇
  2022年   21篇
  2021年   20篇
  2020年   36篇
  2019年   14篇
  2018年   22篇
  2017年   62篇
  2016年   79篇
  2015年   26篇
  2014年   41篇
  2013年   64篇
  2012年   50篇
  2011年   67篇
  2010年   44篇
  2009年   80篇
  2008年   81篇
  2007年   77篇
  2006年   69篇
  2005年   52篇
  2004年   41篇
  2003年   62篇
  2002年   47篇
  2001年   33篇
  2000年   28篇
  1999年   33篇
  1998年   22篇
  1997年   30篇
  1996年   16篇
  1995年   16篇
  1994年   20篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有1293条查询结果,搜索用时 31 毫秒
51.
采用生物质原料腰果酚和9,10-二氢-9-氧杂-10-膦杂菲-10-氧化物(DOPO)为原料, 合成了一种磷杂菲改性腰果酚多元醇(P-Cardanol-Polyol), 并利用核磁共振氢谱和磷谱对其结构进行了表征. 利用P-Cardanol-Polyol对聚氨酯硬泡(RPUF)进行阻燃改性, 得到一系列阻燃聚氨酯硬泡. 考察了P-Cardanol-Polyol的用量对阻燃聚氨酯硬泡的形貌、 密度、 热导率、 压缩性能、 热稳定性以及阻燃性能的影响. 研究结果表明, P-Cardanol-Polyol对聚氨酯硬泡的密度影响可以忽略不计; 随着P-Cardanol-Polyol的加入, 阻燃聚氨酯硬泡的平均孔径逐渐减小, 热导率也逐渐降低. 未改性聚氨酯硬泡的最大热释放速率和总放热量分别为390 kW/m2和31.9 MJ/m2, 阻燃聚氨酯硬泡则降低至340 kW/m2和24.6 MJ/m2. 此外, 阻燃聚氨酯硬泡的压缩强度比未改性聚氨酯硬泡提升了约13%. 炭层分析结果表明, P-Cardanol-Polyol能够促进聚氨酯硬泡形成连续致密且具有良好抗热氧化性能的炭层, 有利于减少燃烧过程中可燃性气体的逸出, 从而提升阻燃性能.  相似文献   
52.
The microstructure, dielectric response, and nonlinear current-voltage properties of Sr2+-doped CaCu3Ti4O12/CaTiO3 (CCTO/CTO) ceramic composites, which were prepared by a solid-state reaction method using a single step from the starting nominal composition of CCTO/CTO/xSrO, were investigated. The CCTO and CTO phases were detected in the X-ray diffraction patterns. The lattice parameter increased with increasing Sr2+ doping concentration. The phase compositions of CCTO and CTO were confirmed by energy-dispersive X-ray spectroscopy with elemental mapping in the sintered ceramics. It can be confirmed that most of the Sr2+ ions substituted into the CTO phase, while some minor portion substituted into the CCTO phase. Furthermore, small segregation of Cu-rich was observed along the grain boundaries. The dielectric permittivity of the CCTO/CTO composite slightly decreased by doping with Sr2+, while the loss tangent was greatly reduced. Furthermore, the dielectric properties in a high-temperature range of the Sr2+-doped CCTO/CTO ceramic composites can be improved. Interestingly, the nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were significantly enhanced. The improved dielectric and nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were explained by the enhancement of the electrical properties of the internal interfaces.  相似文献   
53.
Surfactant-mediated wetting and spreading are ubiquitous. Understanding of these phenomena in-depth allows precise tailoring of wetting performance which can contribute to global challenges in the food supply chain, healthcare, ecology and industrial processes. The first part of this review shows how surfactants can be used to improve the efficacy of fertilisers and pesticides in agriculture, enhanced oil recovery, treatment of lung diseases and extinguishing fires involving flammable liquids. The second part provides analysis of recent studies on wetting and spreading over solid substrates. It includes discussion on the effect of surfactants on the outcome of the impact of liquid drops, the wetting state after impact, autophobic effect and spreading kinetics for both partial and complete wetting, including superspreading. Perspectives of future development in the area of surfactant-assisted wetting and spreading on solid substrates are outlined.  相似文献   
54.
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.  相似文献   
55.
56.
The main aim of this work was to investigate the synergistic effect of expandable graphite (EG) and aluminum hypophosphite (AHP) on the flame retardancy of rigid polyurethane foams (RPUFs). A series of flame retardant RPUF containing EG and AHP were prepared by one‐shot and free‐rise method. The flame retardant, thermal degradation, and combustion properties of RPUF hybrids were characterized through limiting oxygen index (LOI) test, vertical burning (UL‐94) test, thermogravimetric analysis and microscale combustion calorimeter. The LOI and UL‐94 results showed that the RPUF sample with 10 wt% EG and 5 wt% AHP passed UL‐94 V‐0 rating and reached a relatively high LOI value of 28.5%, which is superior over other EG/AHP ratios in RPUF at the equivalent filler loading. Microscale combustion calorimeter results revealed that the incorporation of EG and AHP into RPUF reduced the peak heat release rate and total heat release, thus decrease the fire risk of RPUF significantly. Incorporation of EG and AHP improved the thermal stability of RPUF as observed from the thermogravimetric analysis results and also enhanced the thermal resistance of char layer at high temperature from scanning electron microscopy and Raman spectroscopy. Moreover, it could be seen from thermogravimetric analysis/infrared spectrometry spectra that the addition of EG and AHP significantly decreased the combustible gaseous products such as hydrocarbons and ethers. Finally, the synergistic mechanism in flame retardancy was discussed and speculated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
Adding high loadings of nanoparticles can remarkably alter the functionality of polymer nanocomposite foams. Therefore, this dramatic change was studied at the percolation threshold as a point to predict the properties of foamed nanocomposites using the viscoelastic characteristics of un-foamed ones. In this research, the effect of incorporating 10–40 wt% of ZnO nanoparticles on rheological properties of PS/ZnO samples was investigated. Then, these samples were foamed at processing temperatures of 80 and 120 °C to study morphology and electromagnetic properties. First, the rheological study showed that the storage modulus of nanocomposites increased significantly above 20 wt% of nanoparticles. A connected network of nanoparticles altered the microstructure of nanocomposite at this rheological percolation. The morphological results show a higher cell density for foamed samples above the rheological percolation. From electromagnetic properties, the effect of ZnO connected network is obvious on the absorption enhancement for 30 and 40 wt% and only for 40 wt% of ZnO at 80 and 120 °C, respectively. Therefore, the viscoelastic properties of samples are still dominant at the lower temperature, but the foam structure became more important at the higher temperatures. This shows that the role of the filler network faded at the higher temperature and electromagnetic properties were changed with the foam structure. The microstructure expansion results in the decrease of filler amount at a fixed volume of foams, so more filler fraction is required to form a connected network of nanoparticles.  相似文献   
58.
The elevated strain rate compressive response of closed-cell polyvinyl chloride (PVC) foam at various densities is investigated. Two loading directions, (i.e., parallel and perpendicular to foam rise direction) were considered to investigate structural anisotropy. The elevated strain rates tests (up to 200 s−1) were performed using a customized drop tower device. Engineering stress/strain behavior, energy dissipation, and maximum stress capacity were obtained for each density and compared against each other. Except for the lowest density of 45 kg/m3, strain rate effects were clearly observed through increased compressive strength and plateau stress when loading in the foam rise direction. The strain rate effect is more evident at higher densities. However, no significant strain rate effect was observed when loading perpendicular to the foam rise direction. Scanning electron microscopy (SEM) analysis showed that plastic hinges are the primary deformation mechanism for PVC foam cells. An analytical model has been calibrated using the experimental results and successfully predicted the mechanical response of the foam. Shape anisotropy has been measured employing the SEM images. The analytical approach was also able to predict the foam's anisotropic mechanical response.  相似文献   
59.
In order to improve the performance and durability of polymer electrolyte fuel cells (PEFCs), various improvements in the microstructures of cathode catalyst layers (CLs) were initiated in the early 1990s. More recent advances in CL materials are highlighted, including carbon supports for improved accessibility of Pt nanoparticles (NPs), adsorption of ionomer on the Pt surface, high-oxygen-permeability ionomers, corrosion resistance of mesoporous and microporous carbons, and conductive ceramic supports with a fused-aggregate network structure. These approaches are summarized as stepwise improvements. The influences of the support structure on the distribution of Pt NPs and ionomer are reviewed, as well as their effects on performance and durability. These approaches for carbon supports are extended to conductive ceramic supports and the unique advantages are discussed.  相似文献   
60.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号