首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15028篇
  免费   2611篇
  国内免费   2874篇
化学   15404篇
晶体学   172篇
力学   421篇
综合类   108篇
数学   291篇
物理学   4117篇
  2024年   54篇
  2023年   247篇
  2022年   741篇
  2021年   712篇
  2020年   953篇
  2019年   736篇
  2018年   613篇
  2017年   750篇
  2016年   921篇
  2015年   891篇
  2014年   1020篇
  2013年   1540篇
  2012年   1099篇
  2011年   1136篇
  2010年   903篇
  2009年   950篇
  2008年   965篇
  2007年   917篇
  2006年   773篇
  2005年   746篇
  2004年   719篇
  2003年   551篇
  2002年   437篇
  2001年   333篇
  2000年   268篇
  1999年   250篇
  1998年   237篇
  1997年   187篇
  1996年   165篇
  1995年   150篇
  1994年   115篇
  1993年   124篇
  1992年   58篇
  1991年   46篇
  1990年   37篇
  1989年   26篇
  1988年   25篇
  1987年   25篇
  1986年   14篇
  1985年   10篇
  1984年   13篇
  1983年   10篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
This study assesses the performance of optimized acacia wood-based activated carbon (AWAC) as an adsorbent for methylene blue (MB) dye removal in aqueous solution. AWAC was prepared via a physicochemical activation process that consists of potassium hydroxide (KOH) treatment, followed by carbon dioxide (CO2) gasification under microwave heating. By using response surface methodology (RSM), the optimum preparation conditions of radiation power, radiation time, and KOH-impregnation ratio (IR) were determined to be 360 W, 4.50 min, and 0.90 g/g respectively, which resulted in 81.20 mg/g of MB dye removal and 27.96% of AWAC’s yield. Radiation power and IR had a major effect on MB dye removal while radiation power and radiation time caused the greatest impact on AWAC’s yield. BET surface area, mesopore surface area, and pore volume of optimized AWAC were found to be 1045.56 m2/g, 689.77 m2/g, and 0.54 cm3/g, respectively. Adsorption of MB onto AWAC followed Langmuir and pseudo-second order for isotherm and kinetic studies respectively, with a Langmuir monolayer adsorption capacity of 338.29 mg/g. Mechanism studies revealed that the adsorption process was controlled by film diffusion mechanism and indicated to be thermodynamically exothermic in nature.  相似文献   
902.
Fuel cells have attracted increasing attention due to their low cost, high energy density, low environmental pollution, and abundant raw materials. Oxygen reduction reaction (ORR) is a core technology of fuel cells, and the development of new electrocatalysts with high ORR performance is highly desirable. Herein, we synthesize a series of B, N co-doped hierarchical porous carbons using a soft template method with the integration of self-assembly, calcination and etching. The obtained materials exhibit hierarchical porous structures, controllable pore distribution, partial graphite structures, and B, N co-doping. They can function as the cost-effective and metal-free electrocatalysts, facilitating the diffusion of electrolyte ions and the improvement of ORR performance. Especially, the B, N co-doped porous carbon with the B-to-N molar ratio of 5 (BNC-5) displays a high ORR activity with a half-wave potential (E1/2) of 0.73 V, an onset potential (Eonset) of 0.94 V, and a high limiting current density (JL) of 5.98 mA cm−2, superior to the N-doped C (NC) and BNC-1 (the B-to-N molar ratio=1), BNC-3 (the B-to-N molar ratio=3) and BNC-7 (the B-to-N molar ratio=7) under the identical conditions. Moreover, the BNC-5 exhibits good cycling stability after 5000 cyclic voltammetry (CV) cycles and excellent tolerance toward even 3 M methanol. This research provides a new approach for the facile synthesis of dual element-doped carbon electrocatalysts with high ORR performance.  相似文献   
903.
Bundle-type mutil-walled carbon nanotubes (MWCNTs) composite electrode is the first investigation and publication for the supercapacitor application. According to the thermogravimetric analysis results, as-synthesized BCNTs are considered as the electrode materials for supercapacitors and electrochemical double-layer capacitor in this study. The Brunauer–Emmett–Teller specific surface area of as-prepared bundled carbon nanotubes (BCNTs) is 95.29 m2/g given to a type III isotherm and H3 hysteresis loops. Slow scanning rates promote and enhance to achieve high Cb because of the superior conductivity of CNT bundles and one side close-layered Ni/Mg/Mo alloy inside the BCNT-based electrode and facile electron diffusivity between electrolyte and electrode. The specific capacitance Cs (1,560 F/g) is nearly equal to the maximum specific capacitance, which the BCNT-based composite electrode can actually be able to charge or fill in. The maximum energy density value is 195 Wh/kg with corresponding power density values of 0.21 kW/kg. Furthermore, the active 3D BCNTs material fabricated electrode enhances to contact the electrolyte directly and decreases the ion diffusion limitation. Electrochemical impedance spectroscopy spectrum summarized as the low-frequency area controls by mass transfer limitation, and the high-frequency area dominates by charge transfer of kinetic control. After 2,000 consecutive cyclic voltammetry sacnings and galvanostatic charge-discharge cycles at a current density of 1.67 A/g performs, the specific capacitance retentions of 3D BCNTs electrodes achieved 128.2 and 77.3%, respectively. Three-dimensional BCNT composite electrodes exhibit good conductivity and low charge transfer resistance, which is beneficial to fast charge transfer between the BCNTs electrode materials and electrolytes.  相似文献   
904.
The rapidly growing existence of a number of contaminants (i.e. heavy metals, dye compounds, explosives and pesticides etc.) in environment is an alarming concern not only due to their harmful impacts for the environment bur also due to their potential high risk for human health. Thus, the careful and sensitive detection of these environmental contaminants is ver crucial. Electrochemical sensors combined with molecularly imprinted polymers (MIPs) become an attractive area for environmental monitoring. Benefiting from their great features such as high chemical and physical stability, cheap preparation process, excellent selectivity, sensitivity and fast response towards the target compound/s.This review paper aims to present and highlight the latest progresses in the design and development of novel electrochemical sensor systems composed of MIPs and carbon paste electrodes (CPEs) for the sensitive detection of pollutants in environmental samples.  相似文献   
905.
Water-soluble fluorescent carbon dots (CDs) were synthesized by a hydrothermal method using citric acid as the carbon source and ethylenediamine as the nitrogen source. The repeated and scale-up synthetic experiments were carried out to explore the feasibility of macroscopic preparation of CDs. The CDs/Fe3+ composite was prepared by the interaction of the CDs solution and Fe3+ solution. The optical properties, pH dependence and stability behavior of CDs or the CDs/Fe3+ composite were studied by ultraviolet spectroscopy and fluorescence spectroscopy. Following the principles of fluorescence quenching after the addition of Fe3+ and then the fluorescence recovery after the addition of asorbic acid, the fluorescence intensity of the carbon dots was measured at λex = 360 nm, λem = 460 nm. The content of ascorbic acid was calculated by quantitative analysis of the changing fluorescence intensity. The CDs/Fe3+ composite was applied to the determination of different active molecules, and it was found that the composite had specific recognition of ascorbic acid and showed an excellent linear relationship in 5.0–350.0 μmol·L−1. Moreover, the detection limit was 3.11 μmol·L−1. Satisfactory results were achieved when the method was applied to the ascorbic acid determination in jujube fruit. The fluorescent carbon dots composites prepared in this study may have broad application prospects in a rapid, sensitive and trace determination of ascorbic acid content during food processing.  相似文献   
906.
To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.  相似文献   
907.
Application of low-cost carbon black from lignin highly depends on the materials properties, which might by determined by raw material and processing conditions. Four different technical lignins were subjected to thermostabilization followed by stepwise heat treatment up to a temperature of 2000 °C in order to obtain micro-sized carbon particles. The development of the pore structure, graphitization and inner surfaces were investigated by X-ray scattering complemented by scanning electron microscopy and FTIR spectroscopy. Lignosulfonate-based carbons exhibit a complex pore structure with nanopores and mesopores that evolve by heat treatment. Organosolv, kraft and soda lignin-based samples exhibit distinct pores growing steadily with heat treatment temperature. All carbons exhibit increasing pore size of about 0.5–2 nm and increasing inner surface, with a strong increase between 1200 °C and 1600 °C. The chemistry and bonding nature shifts from basic organic material towards pure graphite. The crystallite size was found to increase with the increasing degree of graphitization. Heat treatment of just 1600 °C might be sufficient for many applications, allowing to reduce production energy while maintaining materials properties.  相似文献   
908.
Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.  相似文献   
909.
A new and simple method, based entirely on a physical approach, was proposed to produce activated carbon from longan fruit seed with controlled mesoporosity. This method, referred to as the OTA, consisted of three consecutive steps of (1) air oxidation of initial microporous activated carbon of about 30% char burn-off to introduce oxygen surface functional groups, (2) the thermal destruction of the functional groups by heating the oxidized carbon in a nitrogen atmosphere at a high temperature to increase the surface reactivity due to increased surface defects by bond disruption, and (3) the final reactivation of the resulting carbon in carbon dioxide. The formation of mesopores was achieved through the enlargement of the original micropores after heat treatment via the CO2 gasification, and at the same time new micropores were also produced, resulting in a larger increase in the percentage of mesopore volume and the total specific surface area, in comparison with the production of activated carbon by the conventional two-step activation method using the same activation time and temperature. For the activation temperatures of 850 and 900 °C and the activation time of up to 240 min, it was found that the porous properties of activated carbon increased with the increase in activation time and temperature for both preparation methods. A maximum volume of mesopores of 0.474 cm3/g, which accounts for 44.1% of the total pore volume, and a maximum BET surface area of 1773 m2/g was achieved using three cycles of the OTA method at the activation temperature of 850 °C and 60 min activation time for each preparation cycle. The two-step activation method yielded activated carbon with a maximum mesopore volume of 0.270 cm3/g (33.0% of total pore volume) and surface area of 1499 m2/g when the activation temperature of 900 °C and a comparable activation time of 240 min were employed. Production of activated carbon by the OTA method is superior to the two-step activation method for better and more precise control of mesopore development.  相似文献   
910.
Ni(II)/CSs were prepared using a simple two-step hydrothermal method. The morphology and composition of the catalysts were studied with scanning electron microscope, transmission electron microscope, and X-ray diffraction. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the surface of the prepared carbon spheres was rich in hydroxyl groups, which was beneficial to remove CO intermediates, and therefore, improving the catalytic efficiency and the antipoisoning ability of the catalysts. The results of cyclic voltammetry and chronoamperometry showed that the electrocatalytic activity and stability of Ni(II)/CSs were higher than that of unloaded NiAc under alkaline environment. When the nickel content was 5 wt.%, the peak oxidation current density of methanol on Ni(II)/CSs electrocatalyst reached the maximum of 34.54 mA/cm2, which was about 1.8 times that of unloaded NiAc. These results indicate that Ni(II)/CSs has potential applications in the electrocatalytic oxidation of methanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号