首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14907篇
  免费   2591篇
  国内免费   2893篇
化学   15293篇
晶体学   172篇
力学   421篇
综合类   108篇
数学   291篇
物理学   4106篇
  2024年   54篇
  2023年   247篇
  2022年   622篇
  2021年   712篇
  2020年   952篇
  2019年   736篇
  2018年   613篇
  2017年   750篇
  2016年   921篇
  2015年   891篇
  2014年   1020篇
  2013年   1538篇
  2012年   1099篇
  2011年   1136篇
  2010年   903篇
  2009年   950篇
  2008年   965篇
  2007年   917篇
  2006年   773篇
  2005年   746篇
  2004年   719篇
  2003年   551篇
  2002年   437篇
  2001年   333篇
  2000年   268篇
  1999年   250篇
  1998年   237篇
  1997年   187篇
  1996年   165篇
  1995年   150篇
  1994年   115篇
  1993年   124篇
  1992年   58篇
  1991年   46篇
  1990年   37篇
  1989年   26篇
  1988年   25篇
  1987年   25篇
  1986年   14篇
  1985年   10篇
  1984年   13篇
  1983年   10篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Al2O3/chitosan-multiwall carbon nanotubes (MWCNTs) were created to increase the exchange capacity of polyvinylidene fluoride (PVDF) ion-exchange membranes. The composite membranes were made by mixing Al2O3 nanoparticles into the PVDF cast solution, then applying a thin coating of chitosan functionalized carbon nano tubes (Cs-MWCNTs) to the PVDF membrane surface. The structure and characteristics of the hybrid membranes were described using XRD, SEM, IR, and TG-DTA. The Al2O3-PVDF/Cs-MWCNTs membrane beat the other Al2O3-PVDF/Cs, Al2O3-PVDF, and PVDF membranes in terms of molybdate, phosphate, and nitrate adsorption. The removal efficiency, pH solution, adsorption capacity, and desorption process of molybdate, phosphate, and nitrate anions by Al2O3-PVDF and PVDF membranes were investigated. The removal effectiveness of molybdate, phosphate, and nitrate, according to the testing findings, was 94.3, 65.6, and 85.78 %, respectively. The adsorption of MoO42?, PO43?, and NO3? increased as the pH increased initially until the best adsorption was achieved, and then decreased significantly as the pH increased further. The total adsorption capabilities of MoO42?, PO43?, and NO3?for the Al2O3-PVDF/Cs-MWCNTs membrane were 65.50, 61.22, and 59.77 mg/g, respectively. Using regeneration and reuse experiments for the simultaneous adsorption of molybdate, phosphate, and nitrate during three consecutive cycles, the adsorption/desorption of Al2O3-PVDF/Cs-MWCNTs was assessed. Al2O3-PVDF/Cs-MWCNTs offer a lot of promise when it comes to eliminating MoO42?, PO43?, and NO3?from actual wastewater samples.  相似文献   
892.
Knowledge of drug solubility data in supercritical carbon dioxide (SC-CO2) is a fundamental step in producing nano and microparticles through supercritical fluid technology. In this work, for the first time, the solubility of metoclopramide hydrochloride (MCP) in SC-CO2 was measured in pressure and temperature range of 12 to 27 MPa and 308 to 338 K, respectively. The results represented a range mole fractions of 0.15 × 10-5 to 5.56 × 10-5. To expand the application of the obtained data, six semi-empirical models and three models based on the Peng-Robinson equation of state (PR + VDW, PR + WS + Wilson and PR + MHV1 + COSMOSAC) with different mixing rules and various ways to describe intermolecular interactions were investigated. Furthermore, total enthalpy, sublimation enthalpy and solvation enthalpy relevant to MCP solvating in SC-CO2 were estimated.  相似文献   
893.
Quercus mongolica leaf (QL), an easily available biomass, was used as the precursor for preparing the hierarchical porous carbon with a large specific surface area and high adsorption capacities toward the representative dye and antibiotic. After being carbonized, QL was further chemically activated, and potassium hydroxide was proved to be a better activator than sodium hydroxide. The QL-derived porous carbon (PCQL) exhibited abundant micro- and mesopores, and the specific surface area reached 3275 m2 g?1. The performances of PCQL were evaluated through adsorbing rhodamine B (RhB) and tetracycline hydrochloride (TC) from water. Four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich-Peterson models), three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), and the thermodynamic equations were used to investigate the adsorption processes. The pseudo-second-order kinetic model and the Sips isotherm model fitted the experimental data well, which indicates that the adsorption processes were controlled by the amount of adsorption active sites on the surface of PCQL, and these adsorption active sites had different affinities for the adsorbates. The maximum adsorption capacities of PCQL toward RhB and TC were 1946.0 and 1479.6 mg g?1, respectively, based on the Sips model. The thermodynamic analysis indicates that the adsorption of PCQL toward adsorbents was spontaneous physical processes accompanied by the increasing disorder degree. The adsorption mechanism was attributed to the combination of the pore-filling, hydrogen bond, and π-π interactions. Moreover, in the fixed-bed experiments, the Yoon-Nelson model fitted the breakthrough curves well, and about 8 L wastewater containing RhB (200 mg L?1) may be effectively treated by 1.0 g of PCQL. Above results indicate that QL is a promising precursor for preparing functional porous carbon materials.  相似文献   
894.
We have investigated the effective utilization potential of carbon nanomaterials in the field of pour point depressants, and reported three kind of carbon-based hybrid nano-pour-point depressants with different dimensions. In this paper, poly-α-olefins-acrylate high-carbon ester pour point depressant (PAA-18) was prepared by esterification and polymerization as the basic pour point depressant. Then, the basic pour point depressant PAA18 was modified by solvothermal method with graphene oxide (GO), carbon nanospheres (Cna) and carbon nanotubes (OCNTs). The morphology and structure of the composites were analyzed by SEM, FTIR and XRD. The results showed that PAA18 was successfully in situ polymerized on GO, Cna and OCNTs. We took the simulated oil as the experimental object, and evaluated its pour point, rheological properties and wax crystal morphology, and achieved excellent results. In the three carbon-based hybrid nano-pour-point depressants with different carbon contents, the oxidation carbon nanotubes composite pour point depressant (PAA18-1 % OCNTs) with carbon content of 1 % had the best pour point and viscosity reduction effect when the dosage was 1250 ppm, which could make the pour point of the simulated oil containing wax decrease by 16 °C. PAA18-1 % OCNTs reduced the pour point by 5 °C more than PAA18. This paper provides reference for the application of carbon nanomaterials in the field of pour point depressant.  相似文献   
895.
The abuse and contamination of antibiotics have long been a hot issue of global concern. On the basis of inner filter effect (IFE), this article established the fluorescence detection system of a mixture of Rutin-AuNPs and 7-hydroxycoumarin, realizing the rapid and sensitive detection of etimicin. The system was also successfully applied to actual samples through a smartphone sensing platform. Due to the antioxidant property of rutin, Rutin-AuNPs were green synthesized with uniform particle size, good monodispersity, and favorable stability. As a good fluorescent quencher, Rutin-AuNPs could effectively quench the fluorescence of 7-hydroxycoumarin based on IFE with a quenching percent of 89.81 %. However, etimicin could bind tightly to the surface of Rutin-AuNPs through charge attraction, Au-N bond, and affinity between sugars, leading to the replacement of 7-hydroxycoumarin. In addition, one or more of the above effects caused aggregation of Rutin-AuNPs, leading to fluorescence recovery rapidly. A linear response between the fluorescence system and etimicin was reasonably established with detection limits as low as 0.12 μM. This system was successfully applied to real sample detection. Moreover, the great potential smartphone sensing platform was also built for practical application owing to its advantages of digitalization and portability.  相似文献   
896.
The spin polarization of carbon nanomaterials is crucial to design spintronic devices. In this paper, the first-principles is used to study the electronic properties of two defect asymmetric structures, Cap-(9, 0)-Def [6, 6] and Cap-(9, 0)-Def [5, 6]. We found that the ground state of Cap-(9, 0)-Def [6, 6] is sextet and the ground state of Cap-(9, 0)-Def [5, 6] is quartet, and the former has a lower energy. In addition, compared with Cap-(9, 0) CNTs, the C adatom on C30 causes spin polarization phenomenon and Cap-(9, 0)-Def [6, 6] has more spin electrons than Cap-(9, 0)-Def [5, 6] structure. Moreover, different adsorb defects reveal different electron accumulation. This finding shows that spin polarization of the asymmetric structure can be adjusted by introducing adatom defects.  相似文献   
897.
A new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7–8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 μmol h−1 during 24 h of radiation.  相似文献   
898.
An efficient hydrazine substitution of p-nitro-aryl fluorides with hydrazine hydrates catalyzed by FeO(OH)@C nanoparticles is described. This hydrazine substitutions of p-nitro-aryl fluorides bearing electron-withdrawing groups proceeded efficiently with high yield and selectivity. Similarly, hydrogenations of p-nitro-aryl fluorides containing electron-donating groups also smoothly proceeded under mild conditions. Furthermore, with these prepared aryl hydrazines, some phthalazinones, interesting as potential structures for pharmaceuticals, have successfully been synthesized in high yields.  相似文献   
899.
Supercapacitors (SCs) with high energy density and power density are a research hotspot. Herein, we report a flexible porous carbon membrane supercapacitor prepared by electrospinning polyacrylonitrile (PAN) with γ-cyclodextrin-MOF (γ-CD-MOF) and then carbonizing at 900 °C. BET results showed that the supercapacitor retained the skeleton of γ-CD, γ-CD-MOF and the pores formed by the spun-fibers, which were 0.73, 1.09 and 23–186 nm, respectively, showing a high specific surface area of 134.7 m2/g. The hierarchically porous structures ensure rapid charge transfer and ion diffusion, resulting in the PAN/γ-CD-MOF carbon electrode with a high capacity of 283.3 F/g. Moreover, the supercapacitor had a high energy density up to 17.5 Wh/kg and power density up to 6 kW/kg. Significantly, it showed excellent cycle stability with a capacitance retention of 97.5% after 6000 cycles. This work provides a supramolecular strategy to construct a flexible porous carbon membrane, which has potential for supercapacitor applications.  相似文献   
900.
Carbon foams have gained significant attention due to their tuneable properties that enable a wide range of applications including catalysis, energy storage and wastewater treatment. Novel synthesis pathways enable novel applications via yielding complex, hierarchical material structure. In this work, activated carbon foams (ACFs) were produced from waste polyurethane elastomer templates using different synthesis pathways, including a novel one-step method. Uniquely, the produced foams exhibited complex structure and contained carbon microspheres. The ACFs were synthesized by impregnating the elastomers in an acidified sucrose solution followed by direct activation using CO2 at 1000 ℃. Different pyrolysis and activation conditions were investigated. The ACFs were characterized by a high specific surface area (SBET) of 2172 m2/g and an enhanced pore volume of 1.08 cm3/g. Computer tomography and morphological studies revealed an inhomogeneous porous structure and the presence of numerous carbon spheres of varying sizes embedded in the porous network of the three-dimensional carbon foam. X-ray diffraction (XRD) and Raman spectroscopy indicated that the obtained carbon foam was amorphous and of turbostratic structure. Moreover, the activation process enhanced the surface of the carbon foam, making it more hydrophilic via altering pore size distribution and introducing oxygen functional groups. In equilibrium, the adsorption of methylene blue on ACF followed the Langmuir isotherm model with a maximum adsorption capacity of 592 mg/g. Based on these results, the produced ACFs have potential applications as adsorbents, catalyst support and electrode material in energy storage systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号