首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14140篇
  免费   1971篇
  国内免费   2662篇
化学   12857篇
晶体学   181篇
力学   329篇
综合类   63篇
数学   2542篇
物理学   2801篇
  2024年   56篇
  2023年   211篇
  2022年   574篇
  2021年   539篇
  2020年   767篇
  2019年   628篇
  2018年   573篇
  2017年   596篇
  2016年   715篇
  2015年   695篇
  2014年   844篇
  2013年   1412篇
  2012年   912篇
  2011年   1072篇
  2010年   867篇
  2009年   931篇
  2008年   972篇
  2007年   929篇
  2006年   764篇
  2005年   691篇
  2004年   672篇
  2003年   540篇
  2002年   421篇
  2001年   330篇
  2000年   299篇
  1999年   302篇
  1998年   266篇
  1997年   183篇
  1996年   180篇
  1995年   190篇
  1994年   151篇
  1993年   137篇
  1992年   76篇
  1991年   46篇
  1990年   40篇
  1989年   20篇
  1988年   26篇
  1987年   22篇
  1986年   17篇
  1985年   11篇
  1984年   17篇
  1983年   15篇
  1982年   14篇
  1981年   11篇
  1980年   10篇
  1979年   9篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Titanium-based metal composites (TMCs) are showing great potential to replace existing traditional materials in aerospace, automotive, and other high temperature engineering applications. This is due to their excellent mechanical, thermal, and physical properties and improved strength to weight ratio. Weight savings in the aerospace industry results in higher efficiency. Carbon nanotubes (CNTs), because of their low density and high Young's modulus, are considered to be an excellent reinforcement for metal matrix composites (MMCs). In the last 20 years extensive research has been carried out to investigate the combination of carbon nanotubes with aluminum, nickel, copper, magnesium, and other metal matrices. The production techniques such as mechanical alloying through powder metallurgy routes and their effects on the mechanical properties of CNT reinforced TMCs are reviewed in this article. The role of the volume fraction of carbon nanotubes and their dispersion into the metal matrix are highlighted. Governing equations to predict the mechanical and tribological properties of CNT reinforced titanium matrix composites are deduced. With the help of this initial prediction of properties, the optimal processing parameters can be optimized. Successful development of CNT reinforced TMCs would result in better wear and mechanical behavior and enhance their ability to withstand high temperature and structural loading environments.  相似文献   
132.
《Current Applied Physics》2015,15(12):1580-1586
The characteristics of gasification reactions for carbon–carbonate mixtures were experimentally investigated at high temperatures up to 900 °C, considering the application of the mixtures to the external anode media of a direct carbon fuel cell. A thermo-gravimetric analysis (TGA) was conducted in either a nitrogen or carbon dioxide ambient environment for Li2CO3, K2CO3 and a mixture of these two substances with carbon black. Changes in the exit gas composition were also monitored during the heating process. It was shown that gasification in the mixture media occurs much more rapidly than carbonate decomposition at elevated temperatures, even for low concentrations of CO2. It was also shown that the loading of carbonates to carbon significantly affects the global gasification reaction; it increased the reaction rate by an order of magnitude and decreased its activation energy. Based on the experimental observations, a simplified reaction model of gasification was suggested for the anode media of a DCFC, regarding carbonate-catalysed and metal-catalysed pathways of Boudouard reactions.  相似文献   
133.
The chemical fixation of CO2 under mild reaction conditions is of significance from a sustainable chemistry viewpoint. Herein a CO2‐reactive protic ionic liquid (PIL), [HDBU+][TFE?], was designed by neutralization of the superbase 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) with a weak proton donor trifluoroethanol (TFE). As a bifunctional catalyst for simultaneously activating CO2 and the substrate, this PIL displayed excellent performance in catalyzing the reactions of CO2 with 2‐aminobenzonitriles at atmospheric pressure and room temperature, thus producing a series of quinazoline‐2,4(1H,3H)‐diones in excellent yields.  相似文献   
134.
Amorphous carbon and graphene co-modified LiFePO_4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossbauer spectra,Raman spectra,SEM,TEM,BET,O_2-TPO,galvano charge-discharge,CV and EIS were applied to investigate the phase composition,carbon content,morphological structure and electrochemical performance of the synthesized samples.The effect of introducing way of carbon sources on the properties and performance of LiFePO_4/C/graphene composite was paid special attention.Under optimized synthetic conditions,highly crystalized olivine-type LiFePO_4was successfully obtained with electron conductive Fe_2P and FeP as the main impurity phases.SEM and TEM analyses demonstrated the graphene sheets were randomly distributed inside the sample to create an open structured LiFePO_4 with respect to graphene,while the glucosederived carbon mainly coated over LiFeP04 particles which effectively connected the graphene sheets and LiFePO_4 particles to result in a more efficient charge transfer process.As a result,favorable electrochemical performance was achieved.The performance of the amorphous carbon-graphene co-modified LiFePO_4 was further progressively improved upon cycling in the first 200 cycles to reach a reversible specificcapacity as high as 97 mAh·g~(-1) at 10 C rate.  相似文献   
135.
To obtain a supported heterogeneous catalyst, laser ablation of metallic palladium in supercritical carbon dioxide was performed in the presence of a carrier, microparticles of γ-alumina. The influence of the ablation process conditions—including supercritical fluid density, ablation, mixing time of the mixture, and laser wavelength—on the completeness and efficiency of the deposition of palladium particles on the surface of the carrier was studied. The obtained composites were investigated by scanning and transmission electron microscopy using energy dispersive spectroscopy. We found that palladium particles were nanosized and had a narrow size distribution (2–8 nm). The synthesized composites revealed high activity as catalysts in the liquid-phase hydrogenation of diphenylacetylene.  相似文献   
136.
The solution‐phase synthesis is one of the most promising strategies for the preparation of well‐defined graphene nanoribbons (GNRs) in large scale. To prepare high quality, defect‐free GNRs, cycloaromatization reactions need to be very efficient, proceed without side reaction and mild enough to accommodate the presence of various functional groups. In this Minireview, we present the latest synthetic approaches for the synthesis of GNRs and related structures, including alkyne benzannulation, photochemical cyclodehydrohalogenation, Mallory and Pd‐ and Ni‐catalyzed reactions.  相似文献   
137.
A catalytic diastereo‐ and enantioselective method for the preparation of complex tertiary homoallylic alcohols containing a vicinal quaternary carbon stereogenic center and a versatile alkenylboronic ester is disclosed. Transformations are promoted by 5 mol % of a readily available copper catalyst bearing a bulky monodentate phosphoramidite ligand, which is essential for attaining both high dr and er. Reactions proceed with a wide variety of ketones and allylic 1,1‐diboronate reagents, which enables the efficient preparation of diverse array of molecular scaffolds.  相似文献   
138.
Soot (sometimes referred to as black carbon) is produced when hydrocarbon fuels are burned. Our hypothesis is that polynuclear aromatic hydrocarbon (PAH) molecules are the dominant component of soot, with individual PAH molecules forming ordered stacks that agglomerate into primary particles (PP). Here we show that the PAH composition of soot can be exactly determined and spatially resolved by low‐fluence laser desorption ionization, coupled with high‐resolution mass spectrometry imaging. This analysis revealed that PAHs of 239–838 Da, containing few oxygenated species, comprise the soot observed in an ethylene diffusion flame. As informed by chemical graph theory (CGT), the vast majority of species observed in the sampled particulate matter may be described as benzenoids, consisting of only fused 6‐membered rings. Within that limit, there is clear evidence for the presence of radical PAH in the particulate samples. Further, for benzenoid structures the observed empirical formulae limit the observed isomers to those which are nearly circular with high aromatic conjugation lengths for a given aromatic ring count. These results stand in contrast to recent reports that suggest higher aliphatic composition of primary particles.  相似文献   
139.
A nitrogen-doped carbon-supported Co catalyst (Co/N-C-800) was discovered to be highly active for the reductive amination of carbonyl compounds with NH3 and the hydrogenation of nitriles into primary amines using H2 as the hydrogen source. Structurally diverse carbonyl compounds were selectively transformed into primary amines with good to excellent yields (82.8–99.6%) under mild conditions. The Co/N-C-800 catalyst showed comparable or better catalytic performance than the reported noble metal catalysts. The Co/N-C-800 catalyst also showed high activity for the hydrogenation of nitriles, affording the corresponding primary amines with high yields (81.7–99.0%). An overall reaction mechanism is proposed for the reductive amination of benzaldehyde and the hydrogenation of benzonitrile, which involves the same intermediates of phenylmethanimine and N-benzylidenebenzylamine.  相似文献   
140.
Finite difference modeling has been used to predict the results of gas transport experiments for a concentration-dependent diffusion coefficient. Experiments on the transport of CO2 in poly(ethylene terephthalate) and poly(ethylene naphthalate) had previously shown a difference between the effective diffusion coefficients for absorption and desorption runs of a double-sided experiment, but this effect had not been seen for single-sided experiments. The finite difference calculations show that such results are to be expected, and the parameters included in the models that attempt to describe the diffusion process in glassy polymers, such as the dual-mode model, and which lead to concentration-dependent diffusion coefficients, can be found by fitting the experimental data for the double-sided experiment using finite difference modeling. The dependence of the effective diffusion coefficient on pressure for the single-sided experiment can be correctly predicted using results from the double-sided experiment for an identical sample. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号