首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5549篇
  免费   1018篇
  国内免费   715篇
化学   4227篇
晶体学   15篇
力学   357篇
综合类   75篇
数学   1123篇
物理学   1485篇
  2024年   29篇
  2023年   132篇
  2022年   693篇
  2021年   676篇
  2020年   569篇
  2019年   319篇
  2018年   255篇
  2017年   247篇
  2016年   344篇
  2015年   322篇
  2014年   288篇
  2013年   470篇
  2012年   259篇
  2011年   253篇
  2010年   211篇
  2009年   269篇
  2008年   236篇
  2007年   234篇
  2006年   218篇
  2005年   143篇
  2004年   168篇
  2003年   145篇
  2002年   124篇
  2001年   83篇
  2000年   85篇
  1999年   91篇
  1998年   64篇
  1997年   60篇
  1996年   42篇
  1995年   43篇
  1994年   27篇
  1993年   18篇
  1992年   17篇
  1991年   21篇
  1990年   14篇
  1989年   10篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   24篇
  1984年   19篇
  1983年   6篇
  1982年   8篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1975年   1篇
  1969年   1篇
排序方式: 共有7282条查询结果,搜索用时 15 毫秒
101.
Centrosymmetric linear [Ar-H-Ar]+ and asymmetric linear [Ar---Ar-H]+ are two stable configurations of [Ar2H]+. Based on the global potential energy surface of [Ar2H]+ provided by our group recently, we calculated the vibrational spectra of [Ar---Ar-H]+ with total angular momentum J = 0 by time-dependent quantum mechanical method, and the influence of quantum tunneling effect on vibrational spectra was found. With the help of the observation on the eigenstate functions and the modified potential energy surface, assignments were made to the spectra. The strong coupling between the excited bending mode of [Ar-H-Ar]+ and the vibrational states of [Ar---Ar-H]+ was discussed.  相似文献   
102.
《Electroanalysis》2006,18(2):186-194
The complex of osmium tetroxide with 2,2′‐bipyridine has been utilized as a probe of DNA structure and an electroactive marker of DNA in DNA hybridization sensors. It produces several voltammetric signals, the most negative of them has been observed only at mercury electrodes. This signal is of catalytic nature affording a high sensitivity of DNA determination. The catalytic current due to evolution of hydrogen in voltammetry of DNA modified by complex of osmium tetroxide with 2,2′‐bipyridine (DNA‐Os,bipy) was studied. Solid amalgam electrodes (modified with mercury menisci) of silver (m‐AgSAE), copper (m‐CuSAE), gold, and of combined bismuth and silver, were used as possible substitutes for mercury electrodes. Besides the hanging mercury drop electrode (HMDE), the catalytic current was observed only on m‐AgSAE and m‐CuSAE. Electrodes of gold and bismuth amalgams did not give the catalytic current. The detection limit of DNA‐Os,bipy on HMDE was 0.1 ng mL?1 (RSD=2.3 %, N=11), and on m‐AgSAE 0.2 ng mL?1 (RSD=3.1%, N=11). The m‐AgSAE was successfully applied as a detection electrode in double‐surface DNA hybridization experiments offering highly specific discrimination between complementary (target) and nonspecific DNAs, as well as determination of the length of a repetitive DNA sequence. The m‐AgSAE has proved a convenient alternative to the HMDE or carbon electrodes used for similar purposes in previous work.  相似文献   
103.
104.
It has been established from geological studies that change in the atmospheric content of carbon dioxide gas commenced about one hundred million years ago. The likely origin of this change is advanced as being the onset of the Brewer circulation caused by the rise in terrain induced by tectonic plate movement. It is demonstrated that tectonic plate movement can be affected by impacts from external bodies which penetrate the crust of the Earth. The consequences of the change in atmospheric concentration of carbon dioxide are proposed as first, extinctions and reductions in animal numbers, including primates, as a result of changes in body chemistry of these animals and second, a change in the rate of weathering of rocks giving rise to changes in the availability of chemicals such as calcium and potassium which are essential for plant and animal life. This latter change contributing to the extinctions and reductions in animal numbers. It is shown that the change in weathering can account for the rise to dominance of angiosperm plants. It is concluded that there were several simultaneous evolutionary environments on Earth which were a function of altitude which gave rise to a vertical variation in atmospheric content of carbon dioxide. This variation disappeared with rise of terrain and the onset of the Brewer circulation. Such changes are advanced and being much more important than any changes in temperature caused by greenhouse effects since the disappearance of atmospheric variations in carbon dioxide allowed animal migration. It is demonstrated that the conditions of extinction could be reintroduced by human activities.  相似文献   
105.
With the rapid development of human society, clean energy forms are imperative to sustain the normal operations of various mechanical and electrical facilities under a cozy environment. Hydrogen is considered among the most promising clean energy sources for the future. Recently, electrochemical water splitting has been considered as one of the most efficient approaches to harvest hydrogen energy, which generates only non-pollutant water on combustion. However, the sluggish anodic oxygen evolution reaction significantly restricts the efficiency of water splitting and requires a relatively high cell voltage to drive the electrolysis. Therefore, seeking a thermodynamically favorable anodic reaction to replace the sluggish oxygen evolution reaction by utilizing highly active bifunctional electrocatalysts for the anodic reaction and hydrogen evolution are crucial for achieving energy-efficient hydrogen production for industrial applications. Nevertheless, it is known that the oxygen evolution reaction can be replaced with other useful and thermodynamically favorable reactions to reduce the electrolysis voltage for realizing energy-efficient hydrogen production. Therefore, in this study, we present a bifunctional nickel nanoparticle-embedded carbon (Ni@C) prism-like microrod electrocatalyst synthesized via a two-step method involving the synthesis of a precursor metal-organic framework-74 and subsequent carbonization treatment for methanol oxidation and hydrogen evolution. The interfacial structure consisting of a nickel and carbon skeleton was realized via in situ carbonization. However, the dispersed nickel nanoparticles do not easily aggregate owing to the partition by the surrounding carbon as it would sufficiently expose the active Ni sites to the electrolytes, ensuring fast charge transfer between the catalyst and electrolytes by accelerating the electrochemical kinetics. In the anodic methanol oxidation, the products were detected as carbon dioxide and formate with faradaic efficiencies of 36.2% and 62.5%, respectively, at an applied potential of 1.55 V. Meanwhile, the Ni@C microrod catalyst demonstrated high activity and durability (2.7% current decay after 12 h of continuous operation) toward methanol oxidation, which demonstrates that methanol oxidation precedes oxidation under voltage forces. Notably, the bifunctional catalyst not only exhibits excellent performance toward methanol oxidation but also yields a low overpotential of 155 mV to drive 10 mA∙cm−2 toward hydrogen evolution in 1.0 mol∙L−1 KOH aqueous solution with 0.5 mol∙L−1 methanol at room temperature, which guarantees the hydrogen production efficiency. More importantly, the constructed two-electrode electrolyzer produced a current density of 10 mA∙cm−2 at a low cell voltage of 1.6 V, which decreased by 240 mV after replacing the oxygen evolution reaction with methanol oxidation.  相似文献   
106.
Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.  相似文献   
107.
Analysis of two previously described polymorphic Alu insertions (Sb19.3 and NBC3) in world-wide human populations generated genotypic frequencies grossly in violation of Hardy-Weinberg equilibrium expectations. GenBank searches at the National Center for Biotechnology Information (NCBI) and sequencing analyses revealed that samples homozygous for the Sb19.3 Alu insertion amplify a band indistinguishable in size to the lack of insertion amplicon, corresponding to a paralogous locus on chromosome 4. This locus displays a very similar sequence (84%) to that flanking the Sb19.3 Alu insertion located at chromosome 19. Moreover, we have determined that NBC3, a different Alu insertion, is not located in the pseudoautosomal region of the Y-chromosome, as previously reported, but in position Yq11.2. Also, the band that mimics the lack of insertion amplicon corresponds to a paralogous locus located at chromosome X with a similarity of 92% to the sequence flanking the NBC3 Alu insertion. Finally, the utilization of newly designed primers avoided amplification from the paralogous loci and allowed a reliable assignation of genotypes for both loci. Unlike previously reported, using our new primers the Y-specific locus NBC3 was found not to be polymorphic in the populations analyzed.  相似文献   
108.
Cell migration and invasion are critical steps in cancer metastasis, which are the major cause of death in cancer patients. Tumor-associated macrophages(TAMs) and interstitial flow(IF) are two important biochemical and biomechanical cues in tumor microenvironment, play essential roles in tumor progression. However, their combined effects on tumor cell migration and invasion as well as molecular mechanism remains largely unknown. In this work, we developed a microfluidic-based 3 D breast cancer model by co-culturing tumor aggregates, macrophages, monocytes and endothelial cells within 3 D extracellular matrix in the presence of IF to study tumor cell migration and invasion. On the established platform, we can precisely control the parameters related to tumor microenvironment and observe cellular responses and interactions in real-time. When co-culture of U937 with human umbilical vein endothelial cells(HUVECs) or MDA-MB-231 cells and tri-culture of U937 with HUVECs and MDA-MB-231 cells, we found that mesenchymal-like MDA-MB-231 aggregates activated the monocytes to TAM-like phenotype macrophages. MDA-MB-231 cells and IF simultaneously enhanced the macrophages activation by the stimulation of colony-stimulating factor 1(CSF-1). The activated macrophages and IF further promoted vascular sprouting via vascular endothelial growth factor(VEGFα) signal and tumor cell invasion. This is the first attempt to study the interaction between macrophages and breast cancer cells under IF condition. Taken together, our results provide a new insight to reveal the important physiological and pathological processes of macrophages-tumor communication. Moreover, our established platform with a more mimetic 3 D breast cancer model has the potential for drug screening with more accurate results.  相似文献   
109.
A rapid and sensitive LC–MS/MS method for therapeutic drug monitoring oral vinorelbine (VRL) metronomic anticancer chemotherapy has been developed and validated. Analysis of VRL and its main active metabolite 4‐O‐deacetylvinorelbine (M1) was performed in whole blood matrix. Both analytes were extracted by protein precipitation and separated on an Onyx monolith C18, 50 × 2 mm column then quantified by positive electrospray ionization and multiple reaction monitoring mode. The LLOQ was 0.05 ng/mL for both VRL and M1. Linearity was up to 25ng/mL with R2 ≥ 0.994. The intra‐ and inter‐assay precisions were ≤ 11.6 and ≤ 10.4% while the ranges of accuracy were [−8.7%; 10.3%] and [−10.0; 7.4%] for VRL and M1, respectively. The clinical suitability of the method has been proved by the determination of the CTrough blood concentrations of VRL and M1 in 64 nonsmall cell lung cancer elderly patients. The analytical performance of the assay was suitable for pharmacokinetic monitoring of VRL and M1, allowing the personalization of the VRL metronomic treatments.  相似文献   
110.
Naturally occurring indole‐3‐carbinol and 3,3‐diindolylmethane show bioactivity in a number of disparate disease areas, including cancer, prompting substantial synthetic analogue activity. We describe a new approach to highly functionalised derivatives that starts from allene gas and proceeds via the combination of a three‐component Pd0‐catalysed cascade with a one‐pot, three‐component carbophilic PtII cascade linked to a stereoselective acid‐catalysed Mannich–Michael reaction that generates complex cyclopropyl diindolylmethanes which show selective activity against prostate cancer cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号