首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   14篇
  国内免费   12篇
化学   9篇
力学   64篇
数学   5篇
物理学   71篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   14篇
  2012年   5篇
  2011年   11篇
  2010年   10篇
  2009年   9篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   8篇
  2004年   1篇
  2003年   6篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有149条查询结果,搜索用时 0 毫秒
121.
122.
The main objective of this research is to study analytically and experimentally the liquid sheet breakup of a flat fan jet nozzle resulting from pressure-swirling. In this study the effects of nozzle shape and spray pressure on the liquid sheet characteristics were investigated for four nozzles with different exit widths (1.0, 1.5, 2.0 and 2.5 mm). The length of liquid sheet breakup, liquid sheet velocity and the size of formed droplets were measured by a digital high speed camera. The breakup characteristics of plane liquid sheets in atmosphere are analytically investigated by means of linear and nonlinear hydrodynamic instability analyses. The liquid sheet breakup process was studied for initial sinuous and also varicose modes of disturbance. The results presented the effect of the nozzle width and the spray pressure on the breakup length and also on the size of the formed droplets. Comparing the experimental results with the theoretical ones for all the four types of nozzles, gives a good agreement with difference ranges from 4% to 12%. Also, the comparison between the obtained results and the results due to others shows a good agreement with difference ranged from 5% to 16%. Empirical correlations have been deduced describing the relation between the liquid sheet breakup characteristics and affecting parameters; liquid sheet Reynolds number, Weber number and the nozzle width.  相似文献   
123.
Primary atomization of liquid injected at high speed into still air is investigated to elucidate physical processes by direct numerical simulation. With sufficient grid resolution, ligament and droplet formation can be captured in a physically sound way. Ligament formation is triggered by the liquid jet tip roll-up, and later ligaments are also produced from the disturbed liquid core surface in the upstream. Ligament production direction is affected by gas vortices. Disturbances are fed from the liquid jet tip toward upstream through vortices and droplet re-collision. When the local gas Weber number is O(1), ligaments are created, thus the ligament or droplet scale becomes smaller as the bulk Weber number increases. Observation of droplet formation from a ligament provides insights into the relevance between the actual droplet formation and pinch-off from a slow liquid jet in laboratory experiments. In the spray, the dominant mode is the short-wave mode driven by propagative capillary wave from the ligament tip. An injection nozzle that is necessary for a slow jet is absent for a ligament, thus the long-wave (Rayleigh) mode is basically not seen without the effect of stretch. By the present simulation, a series of physical processes have been revealed. The present result will be extended to LES modeling in the future.  相似文献   
124.
The characteristics of two-phase flow in a narrow rectangular channel are expected to be different from those in other channel geometries, because of the significant restriction of the bubble shape which, consequently, may affect the heat removal by boiling under various operating conditions. The objective of this study is to develop an interfacial area transport equation with the sink and source terms being properly modeled for the gas–liquid two-phase flow in a narrow rectangular channel. By taking into account the crushed characteristics of the bubbles a new one-group interfacial area transport equation was derived for the two-phase flow in a narrow rectangular channel. The random collisions between bubbles and the impacts of turbulent eddies with bubbles were modeled for the bubble coalescence and breakup respectively in the two-phase flow in a narrow rectangular channel. The newly-developed one-group interfacial area transport equation with the derived sink and source terms was evaluated by using the area-averaged flow parameters of vertical upwardly-moving adiabatic air–water two-phase flows measured in a narrow rectangular channel with the gap of 0.993 mm and the width of 40.0 mm. The flow conditions of the data set covered spherical bubbly, crushed pancake bubbly, crushed cap-bubbly and crushed slug flow regimes and their superficial liquid velocity and the void fraction ranged from 0.214 m/s to 2.08 m/s and from 3.92% to 42.6%, respectively. Good agreement with the average relative deviation of 9.98% was obtained between the predicted and measured interfacial area concentrations in this study.  相似文献   
125.
张鹏  俞刚 《力学学报》2006,38(3):289-295
给出了高Bond数下黏性液滴表面Rayleigh-Taylor线性不稳定性的分析解,这种不稳定性对于超音速气流作用下液滴破碎的早期阶段起着至关重要的作用.基于稳定性分析的结果,导出了用于估算稳定液滴的最大直径及液滴无量纲初始破碎时间的计算式,这些计算式与相关文献给出的实验和分析结果比较显示了良好的一致.  相似文献   
126.
A computer-controlled four-roll mill was used to investigate the deformation and break-up of polymeric drops in the well-characterized flow of an immiscible Newtonian fluid. Aqueous polymer solutions ranging in concentration from 160 ppm to 3% by weight were examined. For zero-shear-rate viscosity ratios greater than order 1, the deformation of the drops closely followed that of Newtonian fluids, irrespective of the droplet material. However, drops with viscosity ratios less than order 1 had significantly smaller critical deformations and the critical capillary number was found to be substantially smaller. Two modes of drop break-up were discovered that differed substantially from that observed for Newtonian drops in the inclusion of cusped ends and tip streaming.  相似文献   
127.
We consider a two-variable partial differential equations model of cardiac excitation and study spiral wave instability in a one-parameter family of solutions. We investigate numerically the existence of periodic traveling wave solution and show the front and the back interaction far away from the bifurcation point in one dimension. In two dimensions, we show the emergence of a stable spiral pattern before the bifurcation point. The most complex spatiotemporal pattern is called ventricular fibrillation when the breakup of one spiral wave makes another wave and the medium becomes chaotic. We show spiral wave instability and periodic traveling wave instability in the same computational settings. It is found that the pattern of the front–back interaction in two dimensions is similar with that of in the one dimension.  相似文献   
128.
A completely new droplet breakup phenomenon is reported for droplets passing through a constriction in an electrokinetic flow. The breakup occurs during the droplet shape recovery process past the constriction throat by the interplay of the dielectrophoretic stress release and the interface energy for droplets with smaller permittivity than that of the ambient fluid. There are conditions for constriction ratios and droplet size that the droplet breakup occurs. The numerical predictions provided here require experimental verification, and then can give rise to a novel microfluidic device design with novel droplet manipulations.  相似文献   
129.
130.
爆炸驱动液体介质外界面的分散和破碎是气溶胶云团形成的重要过程。采用基于维数分裂的欧拉程序和Youngs混合界面处理方法,对中心药爆炸驱动甘油和水介质流场的液体分层现象进行了数值模拟。结合试验结果推断提出了液滴形成过程的三种并存机制:外层射流破碎、内层R-T失稳和中间液层"空化"破碎,分别建立了不同液层破碎液滴的尺寸模拟方法。对比给出抛撒甘油和水装置初级液滴的尺寸分布及最外层理论射流量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号