首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   49篇
  国内免费   31篇
化学   334篇
晶体学   4篇
力学   61篇
综合类   12篇
数学   11篇
物理学   106篇
  2024年   1篇
  2023年   7篇
  2022年   28篇
  2021年   42篇
  2020年   21篇
  2019年   21篇
  2018年   20篇
  2017年   21篇
  2016年   20篇
  2015年   23篇
  2014年   27篇
  2013年   39篇
  2012年   26篇
  2011年   16篇
  2010年   22篇
  2009年   22篇
  2008年   21篇
  2007年   21篇
  2006年   18篇
  2005年   19篇
  2004年   14篇
  2003年   9篇
  2002年   16篇
  2001年   9篇
  2000年   13篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有528条查询结果,搜索用时 31 毫秒
441.
Bone marrow mesenchymal stromal cells (MSCs) have been implicated in the microenvironmental support of hematopoietic stem cells (HSCs) and often co-transplanted with HSCs to facilitate recovery of ablated bone marrows. However, the precise effect of transplanted MSCs on HSC regeneration remains unclear because the kinetics of HSC self-renewal in vivo after co-transplantation has not been monitored. In this study, we examined the effects of intrafemoral injection of MSCs on HSC self-renewal in rigorous competitive repopulating unit (CRU) assays using congenic transplantation models in which stromal progenitors (CFU-F) were ablated by irradiation. Interestingly, naïve MSCs injected into femur contributed to the reconstitution of a stromal niche in the ablated bone marrows, but did not exert a stimulatory effect on the in-vivo self-renewal of co-transplanted HSCs regardless of the transplantation methods. In contrast, HSC self-renewal was four-fold higher in bone marrows intrafemorally injected with β-catenin-activated MSCs. These results reveal that naïve MSCs lack a stimulatory effect on HSC self-renewal in-vivo and that stroma must be activated during recoveries of bone marrows. Stromal targeting of wnt/β-catenin signals may be a strategy to activate such a stem cell niche for efficient regeneration of bone marrow HSCs.  相似文献   
442.
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.  相似文献   
443.
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.  相似文献   
444.
445.
An injectable, non‐hardening nanocomposite bone graft has been developed using a combination of nanohydroxyapatite as bioactive and osseointegrative material; P‐15 peptide‐modified poly(lactic‐co‐glycolic acid) (PLGA) microspheres as biomimetic and osteoinductive agent; and PLGA–poly(ethylene glycol) (PEG)–PLGA as a carrier gel. Increase in lactic acid/glycolic acid ratio of PLGA–PEG–PLGA resulted in stronger gels with a wider gelation window. Addition of 2.5‐fold nanohydroxyapatite resulted in significant changes in injectability (3.5‐fold force of injection), swelling characteristics (2.5 times swelling index), rheological (shear viscosity from 2.1 × 101 Pa s for NC3_700 to 1.5 × 106 Pa s for NC3_73.52 and from 3.9 × 102 Pa s for NC8_700 to 3.76 × 106 Pa s for NC8_732; an increase in elasticity at the level of 1–1000 kPa), and thermal properties of the nanocomposites. A mechanistic study showed that nanohydroxyapatite exhibits a high degree of association with the gel and interferes with its gelation owing to changes in hydrogen bonding interactions between C=?O of polymer chains and P–OH groups of nanohydroxyapatite with water molecules of the gel. A schematic was developed demonstrating changes in bonding interactions among constituent phases with respect to nanohydroxyapatite content emphasizing the importance of material interactions while fabricating multi‐phase nanocomposites for various biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
446.
Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l ‐lactide‐co‐ε‐caprolactone) (poly(LLA‐co‐CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA‐co‐CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC‐seeded poly(LLA‐co‐CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA‐co‐CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA‐co‐CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering.

  相似文献   

447.
A three-dimensional extension of two-dimensional digital image correlation has been developed. The technique uses digital image volumes generated through high-resolution X-ray tomography of samples with microarchitectural detail, such as the trabecular bone tissue found within the skeleton. Image texture within the material is used for displacement field measurement by subvolume tracking. Strain fields are calculated from the displacement fields by gradient estimation techniques. Estimates of measurement precision were developed through correlation of repeat unloaded data sets for a simple sum-of-squares displacement-only correlation formulation. Displacement vector component errors were normally distributed, with a standard deviation of 0.035 voxels (1.22 m). Strain tensor component errors were also normally distributed, with a standard deviation of approximately 0.0003. The method was applied to two samples taken from the thigh bone near the knee. Strains were effectively measured in both the elastic and postyield regimes of material behavior, and the spatial patterns showed clear relationships to the sample microarchitectures.  相似文献   
448.
449.
450.
A facile method is needed to control the protein adsorption onto biomaterials, such as, bone implants. Herein we doped taurocholic acid (TCA), an amphiphilic biomolecule, into an array of 1D nano‐architectured polypyrrole (NAPPy) on the implants. Doping TCA enabled the implant surface to show reversible wettability between 152° (superhydrophobic, switch‐on state) and 55° (hydrophilic, switch‐off state) in response to periodically switching two weak electrical potentials (+0.50 and ?0.80 V as a switch‐on and switch‐off potential, respectively). The potential‐switchable reversible wettability, arising from the potential‐tunable orientation of the hydrophobic and hydrophilic face of TCA, led to potential‐switchable preferential adsorption of proteins as well as cell adhesion and spreading. This potential‐switchable strategy may open up a new avenue to control the biological activities on the implant surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号