首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6980篇
  免费   1181篇
  国内免费   606篇
化学   4687篇
晶体学   41篇
力学   139篇
综合类   56篇
数学   720篇
物理学   3124篇
  2024年   18篇
  2023年   63篇
  2022年   134篇
  2021年   165篇
  2020年   248篇
  2019年   194篇
  2018年   213篇
  2017年   237篇
  2016年   309篇
  2015年   288篇
  2014年   364篇
  2013年   546篇
  2012年   396篇
  2011年   461篇
  2010年   437篇
  2009年   484篇
  2008年   432篇
  2007年   462篇
  2006年   425篇
  2005年   375篇
  2004年   328篇
  2003年   296篇
  2002年   289篇
  2001年   248篇
  2000年   252篇
  1999年   176篇
  1998年   181篇
  1997年   110篇
  1996年   85篇
  1995年   81篇
  1994年   71篇
  1993年   71篇
  1992年   57篇
  1991年   35篇
  1990年   29篇
  1989年   26篇
  1988年   30篇
  1987年   18篇
  1986年   24篇
  1985年   18篇
  1984年   19篇
  1983年   6篇
  1982年   8篇
  1981年   11篇
  1980年   11篇
  1979年   8篇
  1978年   9篇
  1977年   9篇
  1974年   4篇
  1973年   2篇
排序方式: 共有8767条查询结果,搜索用时 15 毫秒
221.
A novel, near‐monodisperse, well‐defined ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(propylene oxide)‐b‐poly[2‐(dimethylamino)ethyl methacrylate], was synthesized via oxyanion‐initiated polymerization. The initiator was a telechelic‐type potassium alcoholate prepared from poly(propylene glycol) and KH in dry tetrahydrofuran. The copolymers produced were characterized by Fourier transform infrared, 1H NMR, and gel permeation chromatography (GPC). GPC and 1H NMR analyses showed that the products obtained were the desired copolymers, with narrow molecular weight distributions (ca. 1.09–1.11) very close to that of the original poly(propylene glycol). 1H NMR, surface tension measurements, and dynamic light scattering all indicated that the triblock copolymer led to interesting aqueous solution behaviors, including temperature‐induced micellization and very high surface activity. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 624–631, 2002; DOI 10.1002/pola.10144  相似文献   
222.
Octahedral, six‐coordinate Co2+ can exist in two spin states: S = 3/2 and S = 1/2. The difference in energy between high spin (S = 3/2) and low spin (S = 1/2) is dependent on both the ligand mix and coordination stereochemistry. B3LYP calculations on combinations of neutral imidazole, NH3, and H2O ligands show that low‐spin isomers are stabilized by axial H2O ligands and in structures that also include trans pairs of equatorial NH3 and protonated imidazole ligands, spin crossover structures are predicted from spin state energy differences. Occupied Co d orbitals from the DFT calculations provide a means of estimating effective ligand strength for homoleptic and mixed ligand combinations. These calculations suggest that in a labile biological system, a spin crossover environment can be created. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
223.
Novel energetic thermoplastic elastomers (TPEs) based on tetrahydrofuran (THF) and 3,3-bis (azidomethyl) oxetane (BAMO) were prepared in this present study by cationic living polymerization. A bifunctional catalyst, triflic anhydride [(CF3SO2)2)O] was selected to be an initiator for the polymerization THF and BAMO. The resulting polymers were characterized by IR, NMR, and DSC, which demonstrated that triblock copolymers with A-B-A type were formed. The polymers were indicated from thermogravimetric analysis (TGA) to have decomposed at approximately 243°C. The decomposition enthalpies were determined by DSC. These enthalpies were varied with the poly-BAMO contents of the copolymers. The synthesized polymers exhibited relatively good mechanical properties and thermoplastic characteristics at room temperature. © 1994 John Wiley & Sons, Inc.  相似文献   
224.
The formation of asymmetric bis-complexes, based on terpyridine ligands and ruthenium ions, is described as a powerful tool for the self-assembly of polymer blocks end-functionalized with terpyridine units. This is illustrated in this contribution for the synthesis of amphiphilic metallo-supramolecular block copolymers, which are further used to produce aqueous micelles. Finally, the reversibility of the supramolecular bond opens new avenues for the preparation and manipulation of these nano-objects.  相似文献   
225.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route to high-spin and anisotropic molecules based on hexacyanometalate [M(CN)(6)](3-) cores. Part 1 of this series was devoted to isotropic heptanuclear clusters; herein, we discuss the nuclearity and the structural anisotropy of nickel(II) derivatives. By changing either the stoichiometry, the nature of the terminal ligand, or the counterion, it is possible to tune the nuclearity of the polynuclear compounds and therefore to control the structural anisotropy. We present the synthesis and the characterisation by mass spectrometry, X-ray crystallography and magnetic susceptibility of bi-, tri-, tetra-, hexa- and heptanuclear species [M(CN)(n)(CN-M'L)(6-n)](m+) (with n=0-5; M=Cr(III), Co(III), M'=Ni(II); L=pentadentate ligand). Thus, with M=Cr(III), d(3), S=3/2, a dinuclear complex [Cr(III)(CN)(5)(CN-NiL(n))](9+), (L(n)=polydentate ligand) was built and characterised, showing a spin ground state, S(G)=5/2, with a ferromagnetic interaction J(Cr,Cu)=+18.5 cm(-1). With M=Co(III) (d(6), S=0) were built di-, tri-, tetra-, hexa and hepanuclear CoNi species: CoNi, CoNi(2), CoNi(3), CoNi(5) and CoNi(6). By a first approximation, they behave as one, two, three, five and six isolated nickel(II) complexes, respectively, but more accurate studies allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   
226.
An O-methylated analog of protonated phenazine-di-N-oxide radical anion abstracts hydrogen from primary and secondary alcohols in a slow (k 1 < 500 M−1 s−1) bimolecular reaction. No kinetic evidence has been found for the unimolecular release of free methoxyl radicals through the homolytic N-OMe bond cleavage in these species. DFT calculations at the UB3LYP 6-31G(d) level indicate that protonated and O-alkylated radical anions of pyrazine, quinoxaline and phenazine di-N-oxides are close analogues of aromatic nitroxyl radicals with the highest spin density localized on the oxygen and nitrogen of the nitrone moiety.  相似文献   
227.
A half‐metallocene iron iodide complex [Fe(Cp)I(CO)2] induced living radical polymerization of methyl acrylate (MA) in conjunction with an iodide initiator [(CH3)2C(CO2Et)I, 1 ] and Al(Oi‐Pr)3 to give polymers of controlled molecular weights and narrow molecular weight distributions (MWDs) (Mw/Mn < 1.2). With the use of chloride and bromide initiators, the MWDs were broader, whereas the molecular weights were similarly controlled. Other acrylates such as n‐butyl acrylate (nBA) and tert‐butyl acrylate (tBA) can be polymerized with 1 /Fe(Cp)I(CO)2 in the presence of Ti(Oi‐Pr)4 and Al(Oi‐Pr)3, respectively, to give living polymers. The 1 /Fe(Cp)I(CO)2 initiating system is applicable for the synthesis of block and random copolymers of acrylates (MA, nBA, and tBA) and styrene of controlled molecular weights and narrow MWDs (Mw/Mn = 1.2–1.3). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2033–2043, 2002  相似文献   
228.
开环聚合;生物降解共聚物;两亲型聚L-亮氨酸-聚乙二醇单甲醚嵌段共聚物的合成与表征  相似文献   
229.
Block copolymer self-assembly and supramolecular chemistry can be combined most naturally to prepare smart polymer nanomaterials. An attractive route is based on comb-shaped supramolecules, obtained by attaching side chains to (co)polymers by physical (non-covalent) interactions. Hydrogen bonding is a key element of our approach. It combines an ease of synthesis with other important approach-specific elements, such as hierarchical self-assembly, strongly enhanced processability, swelling, and cleaving. Functional properties discussed include anisotropic proton conductivity, switching proton conductivity, electronically conducting nanowires, polarized luminance, dielectric stacks (optical reflectivity), functional membranes, and nano objects.  相似文献   
230.
The magnetic interaction and spin transfer via phosphorus have been investigated for the tri‐tert‐butylaminoxyl para‐substituted triphenylphosphine oxide. For this radical unit, the conjugation existing between the π* orbital of the NO group and the phenyl π orbitals leads to an efficient delocalization of the spin from the radical to the neighboring aromatic ring. This has been confirmed by using fluid solution high‐resolution EPR and solid state MAS NMR spectroscopy. The spin densities located on the atoms of the molecule could be probed since 1H, 13C, 14N, and 31P are nuclei active in NMR and EPR, and lead to a precise spin distribution map for the triradical. The experimental investigations were completed by a DFT computational study. These techniques established in particular that spin density is located at the phosphorus (ρ=?15×10?3 au), that its sign is in line with the sign alternation principle and that its magnitude is in the order of that found on the aromatic C atoms of the molecule. Surprisingly, whereas the spin distribution scheme supports ferromagnetic interactions among the radical units, the magnetic behavior found for this molecule revealed a low‐spin ground state characterized by an intramolecular exchange parameter of J=?7.55 cm?1 as revealed by solid state susceptibility studies and low temperature EPR. The X‐ray crystal structures solved at 293 and 30 K show the occurrence of a crystallographic transition resulting in an ordering of the molecular units at low temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号