首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   128篇
  国内免费   46篇
化学   845篇
晶体学   2篇
物理学   29篇
  2024年   2篇
  2023年   9篇
  2022年   22篇
  2021年   30篇
  2020年   63篇
  2019年   23篇
  2018年   21篇
  2017年   18篇
  2016年   47篇
  2015年   40篇
  2014年   62篇
  2013年   68篇
  2012年   87篇
  2011年   57篇
  2010年   51篇
  2009年   50篇
  2008年   47篇
  2007年   31篇
  2006年   44篇
  2005年   18篇
  2004年   26篇
  2003年   27篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1991年   2篇
  1982年   1篇
排序方式: 共有876条查询结果,搜索用时 0 毫秒
721.
Distinguishing glutathione (GSH) level in different subcellular locations is critical for studying its antioxidant function in the signaling system. However, traditional methods for imaging subcellular GSH were achieved in isolated organelles or fixed cells. In this work, we report a quencher-delocalized emission strategy for in situ profiling of GSH at different subcellular locations in living cells. A nonemissive metal–organic framework (MOF) nanoprobe was designed with AIEgen as the linker and CuII as the node and quencher. The AIEgen in MOF structure was lightened up with green emission in a neutral environment due to partial CuII delocalization by competitive binding to GSH. Meanwhile, along with the protonation of AIEgen ligand under acidic environment, the AIEgen-based MOF could be completely dissociated in the presence of GSH to yield yellow emission. The two-channel ratiometric analysis of dual-colored emission of AIEgen-based MOF allows visualization of GSH in cytoplasm and lysosome in living cells, which is also able to report the drug effects on different subcellular GSH levels.  相似文献   
722.
The development of bioorthogonal approaches for labeling of endogenous proteins under the multimolecular crowding conditions of live cells is highly desirable for the analysis and engineering of proteins without using genetic manipulation. N‐Sulfonyl pyridone (SP) is reported as a new reactive group for protein sulfonylation. The ligand‐directed SP chemistry was able to modify not only purified proteins in vitro, but also endogenous ones on the surface of and inside live cells selectively and rapidly, which allowed to convert endogenous proteins to FRET‐based biosensors in situ.  相似文献   
723.
Gold nanoparticles (Au NPs) assembled through Au?S covalent bonds have been widely used in biomolecule‐sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au?Se bonds compared to Au?S bonds, we prepared selenol‐modified Au NPs as an Au‐Se nanoplatform (NPF). Compared with the Au‐S NPF, the Au‐Se NPF exhibits excellent anti‐interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au‐Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies.  相似文献   
724.
Investigation of protein–ligand interactions is crucial during early drug‐discovery processes. ATR‐FTIR spectroscopy can detect label‐free protein–ligand interactions with high spatiotemporal resolution. Here we immobilized, as an example, the heat shock protein HSP90 on an ATR crystal. This protein is an important molecular target for drugs against several diseases including cancer. With our novel approach we investigated a ligand‐induced secondary structural change. Two specific binding modes of 19 drug‐like compounds were analyzed. Different binding modes can lead to different efficacy and specificity of different drugs. In addition, the kobs values of ligand dissociation were obtained. The results were validated by X‐ray crystallography for the structural change and by SPR experiments for the dissociation kinetics, but our method yields all data in a single and simple experiment.  相似文献   
725.
Changes in the cellular levels of glutathione (GSH) and protein S‐glutathionylation (PSSG) are closely associated with a number of human diseases. Despite recent advances, few thiol‐reactive, small‐molecule GSH sensors could selectively detect GSH over other endogenous thiols, and none was capable of detecting PSSG in live mammalian cells. By using a dye‐loaded mesoporous silica nanoquencher (qMSN) capped with anti‐GSH antibody capable of highly selective binding toward GSH and glutathionylated proteins over other molecules, we have successfully developed a fluorescence GSH/PSSG nanosensor, which showed unprecedented selectivity toward PSSG even in the presence of GSH, had amplifiable and programmable fluorescence Turn‐ON properties, and could be used to image endogenous PSSG in live mammalian cells under stimulated conditions for the first time.  相似文献   
726.
《Electroanalysis》2018,30(9):2044-2052
Acid functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were decorated with Au and Fe2O3 nanoparticles (FeONPs) and deposited on glassy carbon electrode (GCE). The resulting hybrid Au/Fe2O3/f‐MWCNTs/GCE electrode and the one further modified by glucose oxidase were compared for detection of glucose. FeONPs and Au were deposited on the f‐MWCNTs by sonication‐assisted precipitation and deposition‐precipitation methods, respectively. The morphology and structure of the samples were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. A uniform distribution of FeONPs with an average size of 5 nm increased the surface area of functionalized nanotubes from 39 to 50 m2/g. The electrocatalytic glucose detection on the modified electrodes was evaluated using cyclic voltammetry and chronoamperometry in 0.1 M phosphate buffer solution at pH 7.0. The non‐enzymatic and enzymatic electrodes show sensitivity of 512.4 and 921.4 mA/mM.cm2 and detection limit of 1.7 and 0.9 mM, respectively. The enzymatic and enzymeless electrodes retained more than 70 % and 80 % of their cathodic faradic current after 70 days, respectively. The sensing mechanism of the non‐enzymatic biosensor is described through the reaction of glucose with iron (III) ions, while in the case of enzymatic electrode, glucose is oxidized by glucose oxidase.  相似文献   
727.
The article describes the research activities in the field of enzyme engineering in Russia. The discussion is focused on fundamental studies of biocatalytic processes that expand utilization of enzymes, biocatalytic synthesis of organic products from renewable raw mate rials, enzymes for hydrolysis of cellulose and lignocellulose materials, immobilized cells, new enzyme-based drugs, enzymes in fine organic synthesis, bioanalytic devices, biosensors, and biofuels.  相似文献   
728.
Metal–organic frameworks (MOFs) have limited applications in electrochemistry owing to their poor conductivity. Now, an electroactive MOF (E‐MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium. The E‐MOF contains mixed ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. E‐MOFs demonstrate excellent performance with surface state model in both co‐reactant and annihilation ECL in aqueous medium. Compared with the individual components, E‐MOFs significantly improve the ECL emission due to the framework structure. The self‐enhanced ECL emission with high stability is realized by the accumulation of MOF cation radicals via pre‐reduction electrolysis. The self‐enhanced mechanism is theoretically identified by DFT. The mixed‐ligand E‐MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies.  相似文献   
729.
Easy‐to‐use platforms for rapid antibody detection are likely to improve molecular diagnostics and immunotherapy monitoring. However, current technologies require multi‐step, time‐consuming procedures that limit their applicability in these fields. Herein, we demonstrate effective molarity‐driven electrochemical DNA‐based detection of target antibodies. We show a highly selective, signal‐on DNA‐based sensor that takes advantage of antibody‐binding‐induced increase of local concentration to detect clinically relevant antibodies in blood serum. The sensing platform is modular, rapid, and versatile and allows the detection of both IgG and IgE antibodies. We also demonstrate the possible use of this strategy for the monitoring of therapeutic monoclonal antibodies in body fluids. Our approach highlights the potential of harnessing effective molarity for the design of electrochemical sensing strategies.  相似文献   
730.
A novel [Ru(bpy)2(dcbpy)NHS] labeling/aptamer‐based biosensor combined with gold nanoparticle amplification for the determination of lysozyme with an electrochemiluminescence (ECL) method is presented. In this work, an aptamer, an ECL probe, gold nanoparticle amplification, and competition assay are the main protocols employed in ECL detection. With all the protocols used, an original biosensor coupled with an aptamer and [Ru(bpy)2(dcbpy)NHS] has been prepared. Its high selectivity and sensitivity are the main advantages over other traditional [Ru(bpy)3]2+ biosensors. The electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) characterization illustrate that this biosensor is fabricated successfully. Finally, the biosensor was applied to a displacement assay in different concentrations of lysozyme solution, and an ultrasensitive ECL signal was obtained. The ECL intensity decreased proportionally to the lysozyme concentration over the range 1.0×10?13–1.0×10?8 mol L?1 with a detection limit of 1.0×10?13 mol L?1. This strategy for the aptasensor opens a rapid, selective, and sensitive route for the detection of lysozyme and potentially other proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号