首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5568篇
  免费   1283篇
  国内免费   425篇
化学   2963篇
晶体学   15篇
力学   76篇
综合类   14篇
数学   62篇
物理学   4146篇
  2024年   26篇
  2023年   48篇
  2022年   286篇
  2021年   307篇
  2020年   349篇
  2019年   299篇
  2018年   245篇
  2017年   318篇
  2016年   377篇
  2015年   340篇
  2014年   595篇
  2013年   499篇
  2012年   425篇
  2011年   431篇
  2010年   338篇
  2009年   367篇
  2008年   356篇
  2007年   349篇
  2006年   222篇
  2005年   181篇
  2004年   133篇
  2003年   109篇
  2002年   93篇
  2001年   65篇
  2000年   84篇
  1999年   70篇
  1998年   62篇
  1997年   54篇
  1996年   44篇
  1995年   28篇
  1994年   25篇
  1993年   17篇
  1992年   22篇
  1991年   16篇
  1990年   21篇
  1989年   14篇
  1988年   11篇
  1987年   13篇
  1986年   3篇
  1985年   10篇
  1984年   11篇
  1983年   1篇
  1982年   9篇
  1980年   2篇
  1975年   1篇
排序方式: 共有7276条查询结果,搜索用时 15 毫秒
901.
Herein we report the development of a turn‐on lanthanide luminescent probe for time‐gated detection of nitroreductases (NTRs) in live bacteria. The probe is activated through NTR‐induced formation of the sensitizing carbostyril antenna and resulting energy transfer to the lanthanide center. This novel NTR‐responsive trigger is virtually non‐fluorescent in its inactivated form and features a large signal increase upon activation. We show that the probe is capable of selectively sensing NTR in lysates as well as in live bacteria of the ESKAPE family which are clinically highly relevant multiresistant pathogens responsible for the majority of hospital infections. The results suggest that our probe could be used to develop diagnostic tools for bacterial infections.  相似文献   
902.
Ambient ionization based on liquid extraction is widely used in mass spectrometry imaging (MSI) of molecules in biological samples. The development of nanospray desorption electrospray ionization (nano-DESI) has enabled the robust imaging of tissue sections with high spatial resolution. However, the fabrication of the nano-DESI probe is challenging, which limits its dissemination to the broader scientific community. Herein, we describe the design and performance of an integrated microfluidic probe (iMFP) for nano-DESI MSI. The glass iMFP, fabricated using photolithography, wet etching, and polishing, shows comparable performance to the capillary-based nano-DESI MSI in terms of stability and sensitivity; a spatial resolution of better than 25 μm was obtained in these first proof-of-principle experiments. The iMFP is easy to operate and align in front of a mass spectrometer, which will facilitate broader use of liquid-extraction-based MSI in biological research, drug discovery, and clinical studies.  相似文献   
903.
While concerns about improving recharged afterglow intensity in vivo still motivate further exploration, afterglow nanoparticles (AGNP) offer unique optical merit for autofluorescence-free biological imaging. Apart from efforts enhancing the afterglow emission properties of AGNP, improving afterglow excitation response to visible or near infrared light is important but has lacked success. Dye sensitization has been used to improve the optical response of photovoltaic nanomaterials and to enhance upconversion luminescence efficiency. This concept has recently been expanded and applied to AGNPs. As a new multifunctional nanoprobe, such dye-sensitized AGNP takes advantage of both high spatial resolution fluorescence imaging and sensitive afterglow imaging. This Concept introduces the background, the concept, mechanism, and related imaging application, as well as reviewing existing challenges and proposing future developmental directions for the dye-sensitized AGNPs.  相似文献   
904.
探讨数字减影血管成像(DSA)、计算机断层扫描血管成像(CTA)联合磁共振(MR)影像评估急性缺血性卒中(AIS)患者脑支循环及预后性关系。选取60例大脑中动脉M1段急性闭塞所致AIS患者为研究对象,根据DSA、CTA与MR影像对其脑侧支循环评估,比较患者基线资料、结局指标等,并分析预后性。结果发现:基于DSA、CTA与MR影像对AIS患者脑侧支循环评估结果一致性良好;3种影像模式下脑侧支循环良好组与不良组结局资料差异显著(P<0.05);多因素分析显示,FVH-ASPECTS评分、rLMC评分、ASITN/SIR分级量表均为AIS患者神经功能预后的独立影响因素。总之,DSA、CTA、MR影像对AIS患者脑侧支循环评估具有一致性,且FVH-ASPECTS评分、rLMC评分、ASITN/SIR分级量表均为AIS患者神经功能预后的独立影响因素。  相似文献   
905.
906.
Secondary ion mass spectrometry (SIMS) is a well-known technique for 3D chemical mapping at the nanoscale, with detection sensitivity in the range of ppm or even ppb. Energy dispersive X-ray spectroscopy (EDS) is the standard chemical analysis and imaging technique in modern scanning electron microscopes (SEM), and related dual-beam focussed ion beam (FIBSEM) instruments. Contrary to the use of an electron beam, in the past the ion beam in FIBSEMs has predominantly been used for local milling or deposition of material. Here, we review the emerging FIBSIMS technique which exploits the focused ion beam as an analytical probe, providing the capability to perform secondary ion mass spectrometry measurements on FIBSEM instruments: secondary ions, sputtered by the FIB, are collected and selected according to their mass by a mass spectrometer. In this way a complete 3D chemical analysis with high lateral resolution <?50 nm and a depth resolution <?10 nm is attainable.We first report on the historical developments of both SIMS and FIB techniques and review recent developments in both instruments. We then review the physics of interaction for incident particles using Monte Carlo simulations. Next, the components of modern FIBSIMS instruments, from the primary ion generation in the liquid metal source in the FIB column, the focussing optics, the sputtered ion extraction optics, to the different mass spectrometer types are all detailed. The advantages and disadvantages of parallel and serial mass selection in terms of data acquisition and interpretation are highlighted, while the effects of pressure in the FIBSEM, acceleration voltage, ion take-off angles and charge compensation techniques on the analysis results are then discussed. The capabilities of FIBSIMS in terms of sensitivity, lateral and depth resolution and mass resolution are reviewed. Different data acquisition strategies related to dwell time, binning and beam control strategies as well as roughness and edge effects are discussed. Data analysis routines for mass identification based on isotope ratios and molecular fragments are outlined. Application examples are then presented for the fields of thin films, polycrystalline metals, batteries, cultural heritage materials, isotope labelling, and geological materials. Finally, FIBSIMS is compared to EDS, and the potential of the technique for correlative microscopy with other FIBSEM based imaging techniques is discussed.  相似文献   
907.
The ever increasing applications of photopolymers from historical thin (<50 µm) coatings to very deep samples (>1 cm) require the development of robust 4D monitoring strategies able to assess photopolymerization efficiencies (first dimension) as a function of time (second dimension) and position (third and fourth dimensions). Therefore, here, we demonstrated that thermal imaging is a valuable photopolymerization monitoring device showing: (a) very high response times (<1 s); (b) high repeatability of the measurement; (c) strong adaptability of the setup to various conditions (e.g., onto irregular surfaces or inside a real time Fourier transformed infrared spectrometer (RT‐FTIR)); (d) extremely deep photopolymerization follow‐ups (and subsequent rationalization) with good resolution in time and in space (real‐time thermal imaging microscopy experiments); (e) adaptability to applied materials. This monitoring strategy was found particularly robust when taking into account all the heat generating phenomena (i.e., direct heating from the lamp vs. temperature raised due to monomer conversion). As a result, we propose thermal imaging as the next reference monitoring system for the new ranges of thick and/or filled samples (e.g., 3D objects, composites) and/or applied photopolymerizations (e.g., 3D printing) more and more present in the literature. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 889–899  相似文献   
908.
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non‐invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging‐based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive‐contrast “bright” manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine‐tune the in vivo behavior of their scaffolds for optimal regeneration.  相似文献   
909.
Quantification of the living human visual system using MRI methods has been challenging, but several applications demand a reliable and time-efficient data acquisition protocol. In this study, we demonstrate the utility of high-spatial-resolution diffusion tensor fiber tractography (DTT) in reconstructing and quantifying the human visual pathways. Five healthy males, age range 24–37 years, were studied after approval of the institutional review board (IRB) at The University of Texas Health Science Center at Houston. We acquired diffusion tensor imaging (DTI) data with 1-mm slice thickness on a 3.0-Tesla clinical MRI scanner and analyzed the data using DTT with the fiber assignment by continuous tractography (FACT) algorithm. By utilizing the high-spatial-resolution DTI protocol with FACT algorithm, we were able to reconstruct and quantify bilateral optic pathways including the optic chiasm, optic tract, optic radiations free of contamination from neighboring white matter tracts.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号