首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   49篇
  国内免费   71篇
化学   65篇
力学   48篇
综合类   2篇
数学   28篇
物理学   538篇
  2023年   5篇
  2022年   11篇
  2021年   8篇
  2020年   14篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   15篇
  2015年   17篇
  2014年   20篇
  2013年   19篇
  2012年   18篇
  2011年   24篇
  2010年   38篇
  2009年   73篇
  2008年   38篇
  2007年   37篇
  2006年   39篇
  2005年   26篇
  2004年   17篇
  2003年   37篇
  2002年   16篇
  2001年   29篇
  2000年   28篇
  1999年   16篇
  1998年   22篇
  1997年   13篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1985年   1篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1971年   1篇
排序方式: 共有681条查询结果,搜索用时 15 毫秒
671.
Surface plasmon resonances (SPRs) have been found to promote chemical reactions. In most oxidative chemical reactions oxygen molecules participate and understanding of the activation mechanism of oxygen molecules is highly important. For this purpose, we applied surface‐enhanced Raman spectroscopy (SERS) to find out the mechanism of SPR‐assisted activation of oxygen, by using p‐aminothiophenol (PATP), which undergoes a SPR‐assisted selective oxidation, as a probe molecule. In this way, SPR has the dual function of activating the chemical reaction and enhancing the Raman signal of surface species. Both experiments and DFT calculations reveal that oxygen molecules were activated by accepting an electron from a metal nanoparticle under the excitation of SPR to form a strongly adsorbed oxygen molecule anion. The anion was then transformed to Au or Ag oxides or hydroxides on the surface to oxidize the surface species, which was also supported by the heating effect of the SPR. This work points to a promising new era of SPR‐assisted catalytic reactions.  相似文献   
672.
提出一种研究非刚性HCP分子的高激发非线性振动的代数哈米顿量,它在极限条件下退化为传统的用谐振子算子表示的模型,拟合观测的实验数据表明,代数模型比传统模型较好地描述了这些数据.  相似文献   
673.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   
674.
In this paper the inverse resonance problem for the Hermite operator is investigated. The Hermite operator with the creation operator , the annihilation operator , and a finitely supported multiplication operator b, is an unbounded operator on 2(ℕ0) having finitely many eigenvalues and infinitely many resonances (except for b=0, when there are no eigenvalues or resonances). It is shown that knowing the location of eigenvalues and resonances determines the potential b uniquely.   相似文献   
675.
In this article, we study the (1/2) ± and (3/2)± triply heavy baryon states in a systematic way by subtracting the contributions from the corresponding (1/2)■ and (3/2)■ triply heavy baryon states with the QCD sum rules, and make reasonable predictions for their masses.  相似文献   
676.
The properties of scattering phases and density of states in a quantum wire with an attractive scatterer are analyzed. We consider two bound states which couple to a scattering channel and give rise to two Fano resonances. It is shown that varying the parameters of the scatterer (such as its strength and position) produces significantly different effects on the phase behavior and density of states, depending on the subband they occur. These effects stem mainly from the difference between the coupling matrix elements of the two resonant levels with the propagating channel mode.  相似文献   
677.
We present a metamaterial-based perfect absorber (PA) that strongly supports four resonances covering a wide spectral range from 1.8 µm to 10 µm of the electromagnetic spectrum. The designed perfect absorber has metal–dielectric–metal layers where a MgF2 spacer is sandwiched between an optically thick gold film and patterned gold nanoantennas. The spectral tuning of PA is achieved by calibrating the geometrical parameters numerically and experimentally. The manufactured quad-band plasmonic PA absorbs light close to the unity. Moreover, the biosensing capacity of the PA is tested using a 14 kDa S100A9 antibody, which is a clinically relevant biomarker for brain metastatic cancer cells. We utilize a UV-based photochemical immobilization technique for patterning of the antibody monolayer on a gold surface. Our results reveal that the presented PA is eligible for ultrasensitive detection of such small biomarkers in a point-of-care device to potentially personalize radiotherapy for patients with brain metastases.  相似文献   
678.
The emergence of new materials and fabrication techniques provides progress in the development of advanced photonic and communication devices. Transition metal dichalcogenides (e.g., molybdenum disulfide, MoS2) are novel materials possessing unique physical and chemical properties promising for optical applications. In this paper, a metasurface composed of particles made of bulk MoS2 is proposed and numerically studied considering its operation in the near-infrared range. In the bulk configuration, MoS2 has a layered structure being a uniaxial anisotropic crystal demonstrating an optical birefringence property. It is supposed that the large-scale and uniform MoS2 layers are synthesized in a vertical-standing morphology, and then they are patterned into a regular 2D array of disks to form a metasurface. The natural anisotropy of MoS2 is utilized to realize the splitting of electric and magnetic dipole modes of the disks while optimizing their geometric parameters to bring the desired modes into overlap. At the corresponding resonant frequencies, the metasurface behaves as either an electric or a magnetic mirror, depending on the polarization of incident light. Based on the extraordinary reflection characteristics of the proposed metasurface, it can be considered an alternative to traditional mirrors and optical splitters when designing compact and highly efficient metadevices, which provide polarization and phase manipulation of electromagnetic waves on a subwavelength scale.  相似文献   
679.
Relativistic resonances and decaying states are described by representations of Poincaré transformations, similar to Wigner's definition of stable particles. To associate decaying state vectors to resonance poles of the S‐matrix, the conventional Hilbert space assumption (or asymptotic completeness) is replaced by a new hypothesis that associates different dense Hardy subspaces to the in‐ and out‐scattering states. Then one can separate the scattering amplitude into a background amplitude and one or several “relativistic Breit‐Wigner” amplitudes, which represent the resonances per se. These Breit‐Wigner amplitudes have a precisely defined lineshape and are associated to exponentially decaying Gamow vectors which furnish the irreducible representation spaces of causal Poincaré transformations into the forward light cone.  相似文献   
680.
A quantum pumping protocol through which the quasiparticles of Weyl/multi-Weyl and nodal-line semimetals are subjected to a time-periodic rectangular potential well is considered. The presence of an oscillating potential of frequency ω creates equispaced Floquet side-bands with spacing ω $\hbar \omega$ . As a result, a Fano resonance is observed when the difference in the Fermi energy (i.e., the energy of the incident quasiparticle), and the energy of one of the (quasi)bound state levels of the well, coincides with the energy of an integer number of photons (each carrying energy quantum ω $\hbar \omega$ ). Using the Floquet theory and the scattering matrix approach in the zero-temperature non-adiabatic pumping limit, characteristic Fano resonance patterns are found in the transmission coefficients. The inflection points in the pumped shot noise spectra also serve as a proxy for the corresponding Fano resonances. Therefore, the pumped shot noise is also numerically evaluated. Finally, the existence of the Fano resonance points is correlated to the (quasi)bound states of the well, by explicitly calculating the bound states of the static well (which are a subset of the bound states of the driven system). Since semimetals with anisotropic dispersions are considered, all the features observed depend on the orientation of the potential well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号